
I

2

Table of Contents

Table of Contents II

Table List IX

List of Figures X

1. Executive Summary 1

2. Project Description 2

2.1. Motivation 2

2.2. Goals and Objectives 2

Desirables 3

Optionals 3

2.3. Requirements 3

Power 3

Connectivity 4

Size 4

Ease of Use 4

2.4. Project Specifications 4

2.5. House of Quality 6

2.6. Project Block Diagram 7

3. Constraints and Standards 8

3.1. Constraints 8

Design Constraints 8

Time Constraints 8

Dimension Constraints 9

Economic Constraints 9

Manufacturability Constraints 9

Power Constraints 9

3.2. Standards 9

Battery Standards 9

3

PCB standards 10

Soldering standards 10

Wireless standards 11

Testing Standards 11

Reliability standards 11

Programming standards 11

4. Project Research 11

4.1. Existing Products & Technology 12

Embrava 12

University of Minnesota Study Space Finder App 13

UCF Online Room Reservation System 14

4.2. Considerations for Future Technology 16

4.3. Hardware Design Research 16

4.3.1. Buttons and Button Placement 17

Reservation Confirmation Button 17

On/Off Switch vs On/Off button 18

4.3.2. LED Notification 18

Application-Specific 19

LED Strip 19

Ring Lights LED 19

LED Choice 20

4.3.3. Sensors 20

4.3.3.1. Ultrasonic sensor 21

4.3.3.2. PIR sensor 21

4.3.3.3. Accelerometer sensor 22

4.3.4. Casing Material Options 23

Adhesive 24

4.3.5. Battery and Battery Casing 24

Lithium Ion vs. Lithium Polymer vs. Nickel-Metal Hydride 25

4.3.6. 3D Printing & Software 26

4.3.6.1 Software 26

Fusion360 26

Design Spark 26

Inventor 26

4

SolidWorks 27

Decision 27

4.3.6.2 3D Printer & Material 27

PLA 27

ABS 27

Final Decision 27

4.3.7. Shape 27

4.3.8. Tamper Proofing 28

4.3.9. Microcontroller 28

NUCLEO-L011K4 28

STM32F103C8T6 ARM STM32 Development Board 29

MSP-EXP430G2ET 29

Raspberry Pi Zero W 29

Arduino UNO Wifi 29

Microcontroller Comparisons 29

Keypad 31

4.3.10. Wi-Fi module 32

CC3100 TI 32

ESP8266 32

TI Code Composer Studio 33

Arduino IDE 34

4.3.11. Serial Communication Technologies 34

SPI - Serial Peripheral Interface 34

I2C - Inter-Integrated Circuit 36

UART - Universal Asynchronous Receiver/Transmitter 38

4.3.12. PCB Design Consideration 40

Size and Shape 40

Electrical Noise 40

Thermal Management 40

Thermal Vias 41

Heat Sink 41

Placement and Routing 41

4.3.12.1 PCB Software Tools 42

Eagle 42

5

EasyEDA 43

Altium 43

4.3.12.2 PCB Fabrication 44

JLCPCB 44

QMS (Quality Manufacturing Services) 44

FemiTron 45

4.4. Software Design Research 45

4.4.1. Front-End 45

4.4.1.1. Cross-Platform vs Native Apps 45

Performance 45

User Experience 46

Functionality 46

Support 46

Updates and Maintenance 46

Development 46

Decision Matrix 46

4.4.1.2. Front-End Programming Languages 47

Java 47

Object Oriented Programming 47

Reduced Security Risks 48

Development Platform - Android Studio 48

Swift 48

Cleanliness and Intuitive Language 49

Ease of Maintenance 49

Performance 49

Development Platform - XCode 49

JavaScript with React Native Framework 50

Maintenance and Updates 50

Performance 51

Development Platform 51

Support 51

4.4.2. Back-End 51

4.4.2.1. Database Cloud Platforms 51

Amazon’s AWS Amplify 51

6

Google Firebase 52

Microsoft Azure 52

Decision Matrix 54

4.4.2.2. Server-Side Development 54

PHP Language 54

Node.js (JavaScript) 55

Python 56

Decision Matrix 57

5. Project Design 58

5.1. Hardware Design 59

5.1.1. Hardware Block Diagram 59

5.1.2. Power Management System Design 60

5.1.2.1. Regulator Design Concerns 61

5.1.2.2. Battery Design 61

5.1.3. Connectors 62

LED/Main 62

Main/Battery 62

5.1.4. Microcontroller 62

MSP430G2ET 62

ESP8266 63

5.1.4.1. LED PCB 66

5.1.4.2. Main PCB 67

5.1.5. Enclosure Design 69

5.1.5.1. Overall Design 69

5.1.6. Outside Casing Design 70

5.1.7. Inside Casing Design 71

5.1.8. Battery Casing Design 72

5.1.9. LED Ring casing 72

5.1.10. Adhesive 73

5.2. Software Design 74

5.2.1. Software Development Process 74

Planning 74

Defining 74

Designing 74

7

Development/Building 74

Testing 74

5.2.2. Deployment 75

Waterfall Model 75

Iterative Model 75

Agile Model 76

Conclusion 78

5.2.3. Front-End 78

5.2.3.1. General User/Student and Admin Flow Sequences 78

5.2.3.2. User (Student) First Interaction 80

Login and Registration Screens 80

Login and Registration Flowchart 81

5.2.3.3. Reserve A Study Spot 82

Available Spots and Spot Information Screens 82

Loading and Reserved Screens 84

Error Screen 85

Reserving a Spot Flowchart 86

Reserved and Confirmed Spot Screens 88

Reserved and Confirm Flowchart 89

5.2.3.4. Admin Interface 90

Admin Login Screen 91

Register a New Device Screen 91

Name of Device 92

Serial Number Field 92

Location/Specific Area Field 92

Outlets Fields 92

Desktop Computers Fields 92

Capacity Field 92

Modify Device Screen 93

5.2.4. Back-End 94

5.2.4.1. Database 95

Entity Relationship Diagram 95

5.2.4.2. Middleware (API) 97

Study Spot Admin Page 99

8

Username Diagram 100

Main Logic (Steps) - User 101

6. Testing 101

6.1. Hardware Testing 101

6.1.1. Microcontroller Testing 102

Stand-Alone microcontroller circuit 102

Voltage level 102

Current level 102

Basic imported code 102

6.1.2. Wi-Fi Module Testing 103

6.1.3. Battery Testing 103

6.1.4. Push Button Testing 103

Component Testing 103

Integrated Testing 103

6.1.5. Keypad Testing 104

Integrated Testing 104

Functional Testing (Keypad and Button) 104

6.1.6. Voltage Regulator Testing 104

Component Testing 104

Integrated Testing 104

6.1.7. Switch Button Testing 104

Component Testing 104

Integrated Testing 104

6.1.8. LED Testing 105

Component Testing 105

PCB Board Testing 105

6.2. List of Test Programs 105

7. Software Testing 106

Select Table Field 107

Simulation 107

Test Cases 108

7.1. Security Concerns 108

7.1.1. Software 109

Possible Overall Solutions 109

9

7.1.2. Hardware 110

8. Administrative 113

8.1. Project Budget 113

8.2. Bill of Materials 114

MSP-EXP430G2ET 114

Parts Acquisition 115

8.3. Project Milestones 115

Table 56: Milestone Table for Senior Design 2 117

Task Delegation 118

9. Conclusion 120

10. Appendix 121

10.1. Bibliography 121

Table List
Table 1: Project Specification……………………………………………………………..
Table 2: Legend for House of Quality Diagram………………………………………….
Table 3: Final Button Choice Specifications……………………………………………..
Table 4: Comparison of Button and Switch………………………………………………
Table 5: On/off switch Final choice……………………………………………………….
Table 6: LED Final Choice & Specifications…………………………………………….
Table 7: Comparison of the different types of LEDs……………………………………
Table 8: Comparison among Ultrasound sensors………………………………………
Table 9: Comparison among PIR sensors……………………………………………....
Table 10: Comparison among Accelerometer sensors………………………………..
Table 11a: Comparison of different casing materials………………………………….
Table 11b: Comparison of different casing materials………………………………….
Table 12: Adhesives comparison………………………………………………………..
Table 13: Decision Matrix Adhesive……………………………………………………..
Table 14: Rechargeable battery material comparison………………………………...
Table 15: Rechargeable battery material comparison………………………………....
Table 16a: Final Choice Battery………………………………………………………....
Table 16b: Final Choice Battery (Actual)………………………………………………..
Table 17: Comparison chart for Enclosure Shape……………………………………..
Table 18: Microcontroller Advantage Comparisons……………………………………
Table 19: Microcontroller Technical Comparisons……………………………………..
Table 20a: Microcontroller Decision Matrix……………………….…………………….
Table 20b: Microcontroller used in actual device………………………………………
Table 21: Comparison chart for Keypad…………………………………………………
Table 22: Final Choice for Keypad……………………………………………………....
Table 23: Comparison chart for wifi Modules…………………………………………..

4
7

18
19
19
20
21
22
22
23
24
24
25
25
26
26
27
27
29
31
31
32
33
33
33
34
34
34
35
35
42
48

10

Table 24: Decision Matrix for wifi Modules…………………………………………......
Table 25: Final Choice Wi-Fi Module……………………………………………………
Table 26: Advantage and Disadvantage for Code Composer Studio IDE………….
Table 27: Arduino IDE Advantage table…………………………………………….....
Table 28: Summary of Materials Comparison………………………………………….
Table 29: Decision Matrix Application………………………………………………......
Table 30: Database Pros and Cons………………………………………………….....
Table 31: Decision Matrix for Databases……………………………………………….
Table 32: Advantages of PHP…………………………………………………………...
Table 33: Disadvantages of PHP………………………………………………………..
Table 34: Advantages of Node.js………………………………………………………..
Table 35: Disadvantages of Node.js…………………………………………………….
Table 36: Advantages of Python…………………………………………………………
Table 37: Disadvantages of Python……………………………………………………..
Table 38: Decision Table…………………………………………………………………
Table 39: Device input requirements……………………………………………………
Table 40: Component Value Table………………………………………………………
Table 41: Pros and Cons for Software Processes……………………………………..
Table 42: Table of Values…………………………………………………………………
Table 43: User Steps for Reservation……………………………………………………
Table 44: Battery Voltage Levels…………………………………………………………
Table 45: LED Testing…………………………………………………………………….
Table 46: Test Programs for Hardware………………………………………………….
Table 47: Software Test Cases for study spot finder…………………………………..
Table 48: Software Security Concerns………………………………………………….
Table 49: Software Security Concern Solutions………………………………………..
Table 50: Hardware Security Concerns…………………………………………………
Table 51: Hardware Security Solutions………………………………………………….
Table 52: Cost Table………………………………………………………………………
Table 53: List of components required to build this project……………………………
Table 54: Parts Acquisition……………………………………………………………….
Table 55: Milestone Table for Senior Design 1…………………………………………
Table 56: Milestone Table for Senior Design 2…………………………………………
Table 57: Software Task Delegation Table……………………………………………..
Table 58: Hardware Task Delegation Table…………………………………………….

List of Figures
Figure 1: House of Quality Diagram………………………………………………………
Figure 2: Block Diagram……………………………………………………………………
Figure 3: Embrava Blynclight Wireless…………………………………………………..
Figure 4: Embrava Desk Sign…………………………………………………………….
Figure 5: Study Space Finder Mobile App at University of Minnesota……………….
Figure 6: Study Space Finder Web App at University of Minnesota………………….
Figure 7: UCF Study Room Reservation System……………………………………….
Figure 8: UCF Study Room Booking Process…………………………………………..
Figure 9: Multi-slave SPI configuration…………………………………………………..

55
56
56
57
57
58
58
59
61
69
78
97

101
103
105
106
108
109
110
111
112
113
114
115
116
117
118
119

6
7

12
13
14
14
15
16
36

11

Figure 10: Illustrative diagram of I2C Connection………………………………………
Figure 11: Message breakdown found within I2C………………………………………
Figure 12: Sample UART diagram……………………………………………………….
Figure 13: UART data transmission packet……………………………………………..
Figure 14: Eagle PCB tool…………………………………………………………………
Figure 15: EasyEda User Interface………………………………………………………
Figure 16: Altium User Interface………………………………………………………….
Figure 17: The Android Studio User Interface…………………………………………..
Figure 18: XCode Development User Interface……………………………….………..
Figure 19: Hardware Block design……………………………………………….………
Figure 20: Power Supply Design………………………………………………….……..
Figure 21: MSP430 Microcontroller……………………………………………….……..
Figure 22a: MSP430 High-Level Wiring Diagram………………………………….….
Figure 22b: Atmega328p High-Level Wiring Diagram…………………………………
Figure 23: ESP8266 Wifi Module…………………………………………………….….
Figure 24: ESP8266 Connection Diagram………………………………………….…..
Figure 25: ESP8266 Dev Board Schematic…………………………………………..…
Figure 26a: Schematic of the LED PCB circuit…………………………………..……..
Figure 26b: Schematic of the LED PCB circuit updated…………………………….…
Figure 27a: Schematic of the LED PCB board…………………………………………..
Figure 27b: Schematic of the LED PCB board updated………………………………..
Figure 28a: Main PCB Schematic…………………………………………………………
Figure 28b: Main PCB Schematic updated………………………………………………
Figure 29a: Main PCB board design………………………………………………….…
Figure 29b: Main PCB board design updated…………………………………………..
Figure 30: Concept Art…………………………………………………………………….
Figure 31a: Outside Casing Design………………………………………………………
Figure 31b: Inside Casing Design………………………………………………………..
Figure 32: Design of the bottom angle and side for battery casing…………………..
Figure 33: LED Ring Casing design……………………………………………………..
Figure 34: Waterfall Model………………………………………………………………..
Figure 35: Iterative Model…………………………………………………………………
Figure 36: Agile model…………………………………………………………………….
Figure 37a. User flow diagram of user login page on application…………………….
Figure 37b. Admin diagram flow………………………………………………………….
Figure 38a: Login Page……………………………………………………………………
Figure 38b: User Creation Page………………………………………………………….
Figure 39: User flow diagram when the user tries to login in………………………….
Figure 40a. Main page of App ……………………………………………………………
Figure 40b. Modal popup when a user selects a table…………………………………
Figure 41a. Timer popup when the user clicks on an available spot…………………
Figure 41b. Successful table reservation from the mobile app………………………..
Figure 42. Error when user tries to reserve a spot……………………………………...
Figure 43. User flow diagram when they reserve a spot ………………………………
Figure 44a. Spot Reserved………………………………………………………………..
Figure 44b. Spot officially confirmed……………………………………………………..

48
49
59
60
62
63
64
65
65
66
66
67
68
69
69
70
71
71
72
73
75
76
77
79
80

 81
81
82
83
83
84
85
86
87
88
88
89
90
91

37
37
38
39
42
43
44

12

Figure 45. Logical flow diagram for the user application……………………………….
Figure 46a. Admin sign-in page…………………………………………………………..
Figure 46b. Admin adding a Finder……………………………………………………….
Figure 47a. Admin observing the status of the finder…………………………………..
Figure 47b. Admin modifies Finder properties…………………………………………..
Figure 48: Back-End Diagram…………………………………………………………….
Figure 49: API Diagram of Study Spots, Students, and Users………………………..
Figure 50: API diagram ……………………………………………………………………
Figure 51: API diagram of the admin page………………………………………………
Figure 52: API diagram of the user login system……………………………………….
Figure 53: Figure of Testing Website…………………………………………………….

100
102
102
109

93
94
95
96
98
99
99

1

1. Executive Summary

In today’s world, time has become an invaluable commodity. This is especially true for
university students, who always seem to be in a rush to get from one class to the next,
cramming multiple assignments in one night or even pulling all nighters in the library. The
problem with time is that it only goes one way. Once it is used up, you can’t get it back.
That is why all we can do as humans is to value every moment we have and minimize
any loss of time in our daily lives. Many applications nowadays have time calculated down
to the minute, so you can know exactly when your next meeting is how long it will take
you to get to your destination, or even when your food will arrive at your doorstep.

However, one big issue that hasn’t properly been addressed yet is an issue that could
save university students, some of the busiest people of all, immense amounts of lost time.
Everyday students lose valuable time looking for a place where they can sit down and
study for their classes. They will waste precious hours over the course of their entire
education searching multiple floors and countless buildings for that perfect desk, the one
with a comfy chair, a nearby outlet, etc. Instead they turn away, disappointed to find that
their spot has already been taken. This process repeats again and again for many
students - that wasted time could be utilized for additional studying time for that student’s
upcoming exam, or for preparation time before studying (e.g. getting food, water,
materials)

Our team is proposing a reservation system for study spaces that will be easily scalable
and accessible to all students. It streamlines the process of finding a proper space and
instead allows the user to focus their time more on what matters: their education. Using
a combination of a hardware device and a mobile app, students can locate their preferred
spot with their desired amenities, reserve it, and arrive to find their spot reserved and
ready for their use. Once they confirm their spot, they can rest easy and begin to do what
they came to do.

This project was inspired by countless first and secondhand experiences. On far too many
occasions we found ourselves searching floor after floor for spaces to accommodate our
needs, adding pointless frustration and subtracting valuable time from our studying
experience. We want to eliminate this useless, ancient process of trial and error and bring
it to the 21st century, as so many things have been. More importantly, we want to improve
the experience of all students through the use of technology and demonstrate that any
problem can be solved with ingenuity and creativity.

2

2. Project Description

2.1. Motivation

As college students, we sometimes find ourselves struggling to find a study space. At the
University of Central Florida, we might have it a bit harder due to the large number of
students on campus and how far apart study spaces are from each other. This ends up
wasting valuable study time, gives us frustration, and even can ruin a perfect day for
studying.

Our solution is an interconnected network of hardware devices attached to study tables
that allow users to find out which spots are available. These devices can be attached to
different study tables in different buildings around campus. This device has an app that
students can download to reserve a spot as well as view all available spots. The device
has lights that represent different states such as: “available” in green, “reserved” in yellow,
and taken in red, in order to easily communicate its status to students. The user can easily
find available spots on the app, tentatively reserve it, and lastly confirm by arriving to the
spot and inputting the correct keycode. We believe this solution makes finding a study
spot a breeze and we hope that students spend more time studying than trying to find
where to study.

2.2. Goals and Objectives

The following were our main goals for this device, which guided our decision making
and design process for the rest of the project:

• The application is easy to use and will work in real-time.
• The device is small and not an inconvenience when attached to the table.
• The device is low cost and energy efficient.
• The device has buttons for the user to confirm a reservation
• The device participates in a wireless confirmation process when prompted by the

web app
• The mobile app shows available spots for the user in the mobile app
• The mobile app shows relevant information to the user such as the amount of outlets

and capacity at each spot
• The mobile app provides the user with the remaining time available to claim table

once reserved
• There is a time out feature to renew the availability if the spot is not confirmed or if

the spot reservation is canceled
• The mobile app gathers university information to limit use to students and collects

PIDs to limit the reservation to only one user per student
• Admins can input the characteristics of study spots such as outlets, or computer

inside of each study spot
• Admins have a different dashboard and sign-in information when using the app to

configure the device

3

Desirables
The following goals are ideally what we wanted in our device but are not necessary to
the main functionality of the device. These goals have less priority and are addressed
only if there is enough time:

• The device uses a camera for user supervision of the area when the user is not

present at the spot
• The device uses a microphone to determine the noise level of the environment.
• The device uses Ultrasonic sensors to detect human presence to verify user left
• The device uses PIR sensors to detect human presence to verify user has left
• The device uses an Accelerometer to detect human presence to verify user left

Optionals
The following goals are optional to this project, and were pursued only as stretch goals
once all fundamental and desirable goals have been achieved:

• The app contains an internal map that the user can use to find the location of the
spot

• The device has direct charging capabilities, including a port for easy recharge of
the device.

2.3. Requirements

Power
If implemented, the device requires to monitor a single study spot and stays active during
the entire time that the building is open. This means that it always needs to consume
power. In order to keep operating costs low, it consumes a small amount of electricity. A
logical starting point for a base requirement was equal to or less than the power
consumption of a CFL bulb (~15 Watts), since they are on all of the time as well. This
allows the device to be marketable and more desirable to consumers who are concerned
with operating costs.

Also, since we were dealing with Wi-Fi technology, microcontrollers and other small
electronics, we needed a DC power source of around 5V, a common voltage for logic
devices. To supply this power, we used a battery, as well as a power management system
in order to maximize the use of a single charge. Other smaller logic devices required a
3.3V input as well. To accommodate for different voltage requirements, voltage dividers
were put in place to allow the correct voltages to be distributed. To further reduce the
power consumption of the device, It operates around a watchdog timer in order to enter
and exit sleep mode. This allows it to collect data at specified intervals, but quickly enters
a low power mode when it is dormant.

Connectivity
Since the location is within a building, Bluetooth connectivity only needs to be confined to
that building, which equates it to a Class 2 device (10 Meters). The actual physical

4

location of the study spot is stored in the app once it is initially configured to a desk so
Students can find their way to it from outside the building. In order to speak to other
devices, a mesh network must be established. As for connection to the database and,
ultimately, to the user, the device needed a Wi-Fi module to connect to the internet at the
desired building, to send and receive data from the database informing it about status
changes and reservation confirmations.

Size
This device is convenient and simple, as it will appear on all the study spaces. To
achieve this, it is as small as possible while still achieving its function. The size for this
device was supposed to be within the volume of 14cm x 14cm x 16cm, yet the actual
measurements are 10x10x19.5. This allows the device to occupy a minimal amount of
space while containing proper electronics and components.

Ease of Use
This device is intuitive for students as this should be accessible to everyone. In order to
achieve this, the device has one central, visible button to claim / release the study space.
This button is large and also very reliable / durable since it will be pressed multiple times
in a day. The rest of the interactions takes place in the application, which was designed
to be user-friendly. To notify users of the study space’s availability, there are 2 LEDs (Or
a color adjustable LED strip) to indicate status. The simplicity of this design allows all
students to easily adapt to using this device.

As for administrators, this device has to be configured when it is first installed in order to
input important categorizing information. To make this device as User friendly as possible,
there is a separate way to configure the device before it is set for use, which is simple,
but secure as to prevent reconfiguration by students.

2.4. Project Specifications

The project specifications were derived from the Requirements section. All our
requirements were listed into verifiable, unambiguous specs that satisfies the needs of
the project. These project specifications are used to test and verify that our device meets
all of our goals, thereby accomplishing its main function.

1 Physical Device

1.1 The power supply provides 9V with a tolerance of 15%

1.2 The voltage supplied to the LED circuit is 2.1V with a tolerance of 15%

1.3 The current supplied to the LED sub-circuit is 9mA with a tolerance of 10%

1.4 The device consumes <100mA when Wi-Fi is not required

5

1.5 The device begins transmitting data to Wi-Fi when required within 6
seconds of waking up from Low Power mode

1.6 The device changes its signal LED color to reflect its status within 4
seconds of its event trigger

1.7 The device weighs under 3 lbs.

1.8 The volume of the device does not exceed 14cm x 14cm x 16cm

1.9 The device sustains a reasonable amount of physical abuse from daily use

1.10 The device checks for status updates every 5 seconds

2 Reservation System

2.1 The mobile app reflects any changes to available spots within 5 seconds of
an event trigger

2.2 The mobile app updates the database with a reservation within 3 seconds
of the user sending a reservation request

2.3 The device enters reservation mode within 7 seconds of the user pressing
the reserve button on the app

2.4 The device updates the database to confirm the reservation within 3
seconds of the user pressing the confirm button on the device

2.5 The device returns to low power mode within 4 seconds of the user
cancelling the reservation

2.6 The app asks the user if they wish to keep the reservation after 5 minutes
of submitting a reservation if confirmation has not taken place

2.7 The app triggers a status reset after 10 minutes of inactivity following a
reservation request.

2.8 The device triggers a status reset after 10 minutes of inactivity following a
reservation request.

2.9 The device remains awake during the entire process of the reservation

3 Spot Configuration

3.1 Any changes to device settings by admin reflects in database

3.2 Users are prohibited from making changes to spot configurations

Table 1: Project Specifications

6

2.5. House of Quality

Figure 1 lays out the customer's needs and how these needs can be met based on
capabilities that the team provided. It considered the customer’s needs and translated
these needs into a well-developed written plan by prioritizing customer’s needs based on
which requirements were the most important. Moreover, it specified which ones were
traceable requirements, provided structure and allocated resources. Table 2 shows the
legend for the House of Quality Diagram for a better understanding of requirements and
their importance.

Figure 1: House of Quality Diagram

7

Legend

↑↑ Strong Positive Correlation

↑ Positive Correlation

↓ Negative Correlation

↓↓ Strong Negative Correlation

+ Positive Polarity

- Negative Polarity

 Blank spaces mean no correlation

Table 2: Legend for House of Quality Diagram

2.6. Project Block Diagram

Figure 2 contains the overall block diagram of our device and how it interacts with the
network and its android application to provide the user with an efficient way of reserving
a study spot. Each block contains a system that was accomplished by the mentioned
students. It also contains a division between the hardware and software components.

Figure 2: Block Diagram

8

In terms of hardware, the device is controlled by an ARM-based microcontroller that deals
with the logic, sensor inputs, the Wi-Fi module, confirmation button/keypad, and the status
LEDs. This device is powered from a rechargeable lithium-ion battery pack, which feeds
into a power management circuit, designed by one of our group members. This circuit
ensures the correct power is distributed to each device (~5V for Microcontrollers, 3.3V for
Wi-Fi module), and reduces the loss of power (Proper grounding).

On the software side, the data from the Wi-Fi module on the Finder is sent in the form of
a JSON String, where the Android application, which is written in either React Native or
Android Studio, processes and presents the data to the user in an intuitive and friendly
way. The data from the Finder is sent to an Amazon EC2 instance for extraction,
transformation, and loading.

3. Constraints and Standards

In this section, we will discuss all related standards and constraints that apply or have an
impact to our project. A brief overview will be given about the constraints and standards.
Moreover, we will discuss how to address any constraints that are prone to affect us.

3.1. Constraints

Design Constraints
This product has considered both hardware and software constraints, so there were no
surprises in the future when the product was in the building process. It is important to
identify and address these constraints when partaking in any design decisions, in order
to ensure that the final design was completed as close to our ideal image as possible.
Multiple constraints are listed below which guided our design process:

Time Constraints
For this project, we were limited to 2 semesters. Therefore, we were limited in time to
perform research, testing, development, and prototypes. Some sacrifices had to be made
in all these areas in order to produce a finished product in the time allotted. Ideally, there
would be more time needed to work on research and the best ways to minimize power
consumption and maximize accuracy. Since this was not the case, the most time and
effort were put into making a functioning product that meets as much of the requirements
as possible, with less emphasis on marketability and consumer needs. In order to abide
by these constraints, we established priorities in terms of what we wanted to do in order
to allow us to accomplish the most important tasks first and secure a working product
before working on less necessary features.

Dimension Constraints
The device used in this project can be placed on desks of all sizes, where students will
be utilizing most of the available space. This means that the device is large enough to be
noticeable and contain all the necessary components, but small enough not to create a
distraction or inconvenience to the students that are studying.

9

Economic Constraints
The cost of this device was first and foremost limited to the budget of this team, but more
importantly, it was limited by the fact that this product was made to be sold in mass
quantities to work together and provide a service. Therefore, they are relatively cheap so
that multiple devices can be used at once. This will allow for the greatest marketability
and consumer desirability. To determine a reasonable constraint, the team observed
similar products in the market and found an average selling point.

Manufacturability Constraints
This device required a housing to contain all the components. Considering the state of
today’s “Maker” mindset and technology, it was relatively easy to manufacture complex
housing and structural components using 3D printers and other common technologies,
however, due to other factors, the team had to build a handmade housing. Some
examples of research in these options were explored further along this document. These
manufactured parts were by complexity, cost, and durability. Besides manufacturing
certain parts ourselves, we were constrained by parts. This included PCBs, small logic
devices, etc. We planned and designed knowing these manufacturing constraints in mind.

Power Constraints
In order to minimize the amount of maintenance required, we needed to keep the power
draw of this device to be as low as possible to allow a single charge of battery to last for
a long time. Having the battery run out too quickly requires a device to constantly need
charge which is a problem that can compound quickly when you factor in the idea that
this device will be sold in multiple units. It would be very tedious and unattractive to
consumers if a constant recharge is required for this device. Sleep modes and other forms
of energy conservation practices keep the power consumption low and allow the device
to run for many hours or possibly days without running out of power.

3.2. Standards

Standards are important for industries building new products because it assists with the
procedures and requirements for the design of the product. Standards ensure that the
product is efficient and reliable through a set of rules, procedures, and requirements. The
following standards were used to build the Study Spot Finder product in a safe and proper
manner.

Battery Standards
This product was decided to be portable and a rechargeable battery was required for the
system. In order to achieve this, ANSI C18.2M was used. ANSI is the American National
Standards Institute which is a private non-profit organization in charge of standards for
products in the United States. Batteries in the United States follow these standards.
These standards mostly apply to portable rechargeable batteries using the following
mixtures: Nickel-cadmium, Nickel-metal hydride, Lithium-ion.

10

These standards give batteries a high reliability where batteries are safe as long as it has
not been manipulated by disassembling, crushing, opening or mutilating it. According to
ANSI a person can use the battery safely without any battery failure. To prevent previous
actions made to the battery in the product, we placed the battery in a case so students
cannot access the battery.

PCB standards
IPC, also known as the Association Connecting Electronics Industries, is a trading
company in charge of standardizing the production requirement of some electronic
equipment. Also, these standards are created to provide electronic manufacturing
industries a set of rules and procedures to follow. Some standards includes:

• Printed board
• Printed electronics
• Design standards
• Assembly
• Embedded Technologies
• Electronic enclosures

IPC-221B are standards used and followed for printed board designs used in commercial
PCBs. These standards are general requirements for component required and PCB
designs. Some standards needed were the following:

• IPC-T-50 Terms and Definitions
• IPC-2615 Printed Board Dimensions and Tolerances
• IPC-D-325 Documentation Requirements for Printed Boards
• IPC-ET-652 Guidelines for Electrical Testing of Unpopulated Printed Boards

These standards helped to build this project in order to achieve the desired outcome. The
product has reputation, reliability, and profitability. Moreover, this universal standard
approves global usage.

Soldering standards
The most common standards used in the industry regarding soldering connections and
connection of electronic assemblies are the IPC J-STD-001, Requirements for Soldered
Electrical and Electronic Assemblies and the IPC-A-610, Acceptability of Electronic
Assemblies. These standards cover all forms of connections across all kinds of terminals.

Wireless standards
Since this device uses a Wi-Fi module, we needed to comply with all of the standards of
wireless Wi-Fi communication (IEEE 802.11). In order to accommodate for our device,
our budget, computing power, and simplicity, the most compatible version of this standard
to move forward with was 802.11g. This set of standards encompasses most Wi-Fi
devices, with backwards compatibility to the original 802.11 standards. These standards
encompass the 2.4 GHz frequency range as well, which is most likely what we supported
in our Wi-Fi modules.

11

Testing Standards
There is a useful standard provided by IEEE (IEEE 1012-2016 - IEEE Standard for
System, Software, and Hardware Verification and Validation) that covers the entire cycle
of the product that we are producing, which covers the verification and validation
processes. This allowed us to make sure that all our requirements were accounted for in
an organized manner.

Reliability standards
One of the last steps for a life cycle of a product is reliability. A product should be durable
and reliable to be sold in the market else legal procedures will follow against the producer.
Reliability standards are protection standards against legal terms in order to demonstrate
the product’s full functionality for the duration estimated in the life span. These standards
ensure that the product will have a meaningful use to the customer. If the product
performs most of their features but it does not charge or the system goes down regularly,
it can be considered as a defect product and can create issues in the future.

If a defect product gets in the market, we will need to provide replacement service or
service to repair any damage component. The software section will be updated constantly
to provide the latest configuration and fix debugs. The hardware section will need to
inspect once every life span of the product in order to replace parts or update the design.
Also, the product’s parts can be reused for other purposes. A reliable product will attract
more customers which will increase the revenue. This revenue can then be used to
upgrade and produce more products.

Programming standards
Many different programming languages were used during this project. One of the main
languages was the C language used in programming the main microcontroller. The C
language follows C11 standards (the formal name being ISO/IEC 9899:201). As for the
software side, the data that will be exchanged between the microcontroller and database
for processing is in a JSON format (JavaScript Object Notation) under the STD90
standard, which defines JSON, as a “lightweight, text-based, language-independent data
interchange format”. JSON also lies under the standards ISO/IEC 21778:2017 and
ECMA-404.

4. Project Research

The key idea behind this product is to provide students a space to study without wasting
time looking for one. Today’s world is continuously making improvements and new
products are being introduced on the market at a fast pace. There are many functional
products with features that align to our ideal product. Companies such as Embrava and
even certain universities themselves have already built products which target more
efficient work environments through hardware or software applications.

Our product has a combination of both software and hardware, and research from existing
products in both fields can greatly benefit our design process. Some of the most influential

12

examples can be seen below. We also went over how the product was going to differ from
our ideal device and what we could take away from products that we didn't see in the
current market for what we were aiming for.

4.1. Existing Products & Technology

Embrava
Embrava is an intelligent desk signage for agile work environments. This device was
created to target open-plan offices and agile layouts since these offices are prompt to
interruptions, and difficulty to find a space or colleague. Moreover, it focuses on employee
availability, workspace availability, workplace accessibility and workplace analytics. This
company has two different products which has the same goals, but different features
based on what the workplace needs. Figure 3 is the Blynclight Series and Figure 4 is the
Desk Signage product.

Figure 3: Embrava Blynclight Wireless

13

 Figure 4: Embrava Desk Sign

These two devices have different device design however the functionality is the same.
Both devices oversee telling other employees whether it is busy or not depending if it is
on a conference or on a skype business conference. On these two devices, a reservation
system is used which tells the availability of the user. Moreover, it uses a location system
to locate the user. However, this design differs from our ideal Study Spot design because
it requires the employee to dock their computer to the Spot station, which allows it to
recognize the employee and mark the location as reserved. We allow user profiles to be
made within the app in order to identify the user and implement a keypad confirmation in
order to verify that the correct user has confirmed the sport.

University of Minnesota Study Space Finder App
The University of Minnesota has a web application where you can find individual study
spots and study rooms for collaboration. This web application displays study spots in
every building including an image of the spot itself.

Also, it contains useful information about the spot to help students pick the right area
based on their needs. Some of the spot information includes monitor availability, printer
access, whiteboards, outlets, noise level of the room, and type of seats (table/chair or
lounge seating). Figure 5 shows an example of the mobile version. Here, a map is
provided as well as detailed information about the selected study space. There is also a
picture of the selected study space.

14

Figure 5: Study Space Finder Mobile App at University of Minnesota

Figure 6: Study Space Finder Web App at University of Minnesota

In Figure 6, we see the web version of the Study Space finder app. In this figure we can
also notice the ability to filter the visibility of available spots based on checkboxes of what
users desire in their study space. These factors were taken into consideration of the
design for our Study Spot Finder. The big difference between our products is that the
University of Minnesota’s Study Space Finder system only finds study spaces, but there
is no option to reserve them. This is a crucial step for our product.

UCF Online Room Reservation System
Since the University of Minnesota’s Study Spot Finder can only find study spots and not
reserve them, we turned to our own university’s reservation system for something similar:

15

Study Rooms. On the website for the John C. Hitt library, there is a page for reserving
study rooms in the library which closely resembles something we wanted to create for
reserving study spaces in the same building.

The reservation page shown in Figure 7 shows all of the available rooms as well as their
status and some details about the room. Once selected, the user can input their
credentials and reserve the room. This system helped us in providing ideas for layout and
the reservation process and interface, but for our product we focused mostly on instant
reservations rather than making them hours or even days in advance. This was an
unrealistic expectation for our application, as this is only for study spots such as desks.

Figure 7: UCF Study Room Reservation System

Figure 8 demonstrates the process for obtaining information for the booking. One thing
that is immediately visible is the bland user interface. However, they require the same
information that we planned on using for study space reservation.

16

Figure 8: UCF Study Room Booking Process

4.2. Considerations for Future Technology

As we looked at existing products and technology we saw small advancements in
technology to facilitate students to have a better experience at school and tools to
succeed in classes. This included a busy light device from embrava and study space
finder web app reservation system. Even though the idea design was not based on these
previous technologies, they were great ideas found to begin the technology the team
planned to build. Our product incorporated some features of these ideas as shown
throughout the paper but the technology was improved and built according to our desired
goals.

Our expectations for the project was that students find a study space without wasting time
and in an organized manner. Sometimes, finding a study space is similar to finding a
parking spot. We were hoping that this product reduces the amount of time looking for
study space and uses them to study instead. In the requirements specification section,
the product was divided into three sections, this means that improvements can still be
made after the product was built based on the essentials.

For future improvements, the product is desired to have sensors that will improve its
functionality and be more user friendly. Sensors will allow users to have more accurate
information about the state of the space and also a microphone could be installed to
provide information such as the level of noise of the space.
As of now, integrating these two systems accomplished our goal to solve the problem and
including new components that they are lacking brings this device to another level.

4.3. Hardware Design Research

This section includes the research behind this product in order to compare the different
hardware components available, which allowed the group to make the right choice and
picked the best component based on the needs and overall functionality of the product.

17

This section also includes comparison tables and decision matrices to accomplish these
tasks.

4.3.1. Buttons and Button Placement

In this section, we will be discussing the different desirable options for buttons needed
for the reservation confirmation and to turn on and off. Advantages and disadvantages
will be discussed as well as the best and final choice of buttons.

Reservation Confirmation Button
When a student reserves a study space, there needs to be a way to confirm that the
student has made it to the study space to “confirm” the reservation. This process is unique
to the student making the reservation, and it is easy and intuitive for the student. In order
to make the process as easy as possible, inspiration was taken from many game shows
and theme parks to imagine what a user-friendly button would look like. Ultimately we
decided on a large push button on the top of the device. This button is very large in order
to easily communicate its function as the “main” button to press.

We decided on a push button since the device could unknowingly be moved or pushed
over if a switch or lever were to be used. Since the push button provides a downward
force, it does not force the device into any unwanted direction. A push button was also
ideal for triggering a single button interrupt, which was ideal for the process that we
wanted to integrate it into.

The next decision was deciding whether to fabricate our own button or purchase a
premade button. The advantages of making our own button was that we had more
creative control over the design, but it would end up being more expensive (Buying
separate parts) and would take longer to design (Housing for spring, mechanism to push
the button). On the contrary, a premade push button did not have all of the ideal features
that we wanted (LED inside push button), but it was less expensive and ready to
implement. Ultimately, we moved forward with a premade button in the interest of time
and money.

Our final choice for the reservation button was the Jiu Man JM-100mm Arcade LED push
button, specified in Table 3. This button is large enough to attract attention as well as
sleek. It also had support for LEDs, for aesthetic purposes.

Manufacturer Site Cost Size Weight Material

Jiu Man Amazon $9.99 100mm 265 g PVC and ABS
Plastic

Table 3: Final Button Choice and Specifications

18

On/Off Switch vs On/Off button
Since the device should not always be “On” (i.e. when it is being transported or put into
storage for any reason), it needed a way to trigger the power down of the device. In the
research for this kind of button we had to take into consideration where this button would
be located, and its susceptibility to being turned off by users. Table 4 demonstrates the
advantages and drawbacks of using different forms of switches. This switch is located
inside of the device so that it cannot be accessed by students.

On/Off type Pros Cons

Button
Takes up less space, simple
action (Push), Easier to hide/
Prevent tampering

Can only be in 2 states
(On/Off)

Switch
More intuitive for On/Off
operation, Can be in 2 states

Takes up more space,
Complex Action, Harder to
hide/ Prevent tampering

Table 4: Comparison of Button vs Switch

Ultimately we decided to go with a push button which will have two states. The part we
chose was the Judco model# J-188A-1, specified in Table 5. The button will be located
inside the outer casing of the device, making it accessible only to administrators.

Manufacturer Model Site Cost Rating Material

Judco J-188A-1 All Electronics $1.85 6 Amps @ 125Vac Plastic

Table 5: On/Off switch Final Choice

4.3.2. LED Notification
LED’s are essential hardware components for many designs as they provide a visual
representation of events, lighting for pathways, advertisements or means to display a
state of a system. For this product purposes, LED provides an aesthetic appeal as well
as it displays information about the state of the system. For example, red lighting is
displayed when the study space is busy, yellow lighting is displayed when reserved and
green lighting when space is available. LEDs in this case were added as an essential
feature.

There are many different types of LED’s in which they differ on shapes, sizes, colors and
efficiency. There are three types of categories of LEDs which include miniature, high
power, and application-specific. The appropriate LED was selected based on the
functionality and characteristics needed, which are to signal students from far and

19

communicate to them the status of the desk. It also uses as little power as possible to
extend battery life.

Application-Specific
This kind has several LEDs categories that fall into it RGB, Bi-color and Tri-color, Flash,
Alphanumeric and lighting LEDs.

The two types considered for this product were Tri-color or RGB LEDs. Since we only
needed 3 colors for our design, Tri-color LED lights would have been very handy, as they
can be adapted to any color and therefore take the place of 3 separate LEDs. However,
they would have been harder to implement logically and can have weaker brightness than
regular LEDs. Single LED lights specialize in one color and can have a stronger glow,
although their single function proves more time and power consuming. However, it was
the simplest and strongest approach. Some other LED structures were also explored
during the research for LED notifications.

LED Strip
LED strip lights is a new RGB LED technology with versatile characteristics that gives
them an advantage against LEDs discussed previously. These characteristics include:

• Many individual LED emitters mounted on a narrow and flexible circuit board
• Low-voltage DC power required
• Variety of fixed and variable colors and brightness
• Can be adjust to length needed and includes a double-sided adhesive.
• Less connections and wired
• Variety of customization

Some types of LED strips depend on applications and constraints of the product desired.
DC flex strips run on 12 Vdc, these LEDs can be easily installed due to the 3M adhesive
it has as well as it is very convenient that is coated with a silicone cover which prevents
it from water damages. There are also LEDs strips that are AC LEDs that require an outlet
to run, it provides the same characteristics such as 3M adhesive and waterproof casing.
However, these AC LED strips were not suitable for our product since our desired product
runs on DC which includes batteries instead of outlets. LED rope lights are omni-
directional LEDs, the usual form of packaging is in the form of rope light packaging.

Ring Lights LED
One option for the product was to use a similar LED that Alexa uses known as ring lights
LEDs. These LEDs are fixed LEDs non-flexible in a round ring packaging. They are known
for stability and usually run on low voltage. It is more frequently used for imaging purposes
such as an add-on for phones cameras or as illumination for circle mirrors. Due to its
brightness, most uses are on the imaging section since it helps to demonstrate any
defects and display a brighter image. However, Alexa uses a similar LED but a thinner
version on their devices.

20

LED Choice
After researching among the different options of LEDs and evaluating each option
carefully, we created Table 7 to demonstrate the results of our findings. Ultimately we
decided on the RGB LED located specified in Table 6.

Manufacturer Model Site Cost Voltage Max Current Luminosity

Jameco
Value Pro

RGB
LED

Jameco
Electronics

$0.39 2-3.2V ~30 ma 5000-9000
mcd

Table 6: LED Final Choice & Specifications

We decided it was the best choice as all of the other options required a higher voltage.
All of our logic devices operate at or around 3.3V and 5V, so having an LED falling under
that range is more practical for the design of the circuitry for this device.

LED String Type Operating
Voltage (V)

Light Color Additional Features

Flexible LED circuit 12V RGB Flexible, wide PCB

Full Color Flexible
LED circuit

12V RGB DMX 512 compatible,
flexible

Driverless RGB LED
Strip Light

12V RGB Driverless, cuttable
segments

Ring Lights WS2812B 5 V Vary Stability and efficient

CornholeRing Lights 4.5 V Vary N/A

Lumex 2.1V R, Y, G Simple, cheap, accessible

Table 7: Comparison of the different types of LEDs

4.3.3. Sensors

Sensors are not an essential requirement but fall into a desirable requirements section
where if there was a slight possibility of including them based on time, the product would
have included sensors which would have added another feature to the device. This
feature was supposed to determine if the space is busy or available which was going to
help the reservation system to be more accurate in case students forgot to cancel a
reservation or missed a reservation.

Three main sensors have been discussed during the requirement specification process
where the team concluded that ultrasonic, PIR and accelerometer sensors are best
suitable for the desired performance of the device.

21

4.3.3.1. Ultrasonic sensor

Ultrasonic sensors are ideal for this design because it will determine whether there is a
student in the study space or not. This sensor determines if there is any object by
measuring distance using ultrasonic waves. The sensor head emits an ultrasonic wave
and receives the wave reflected back from the target. If no reflected wave is received, it
means that no object has been found.

This device would be implemented to verify that a student is not present in the spot. This
verification is needed if a student reserves a spot and never comes to claim it or forgets
to claim it using the confirmation button. We want to be as thorough as possible before
resetting a spot to not give students a worse experience. The following sensor options
were explored in Table 8.

Sensor Range Cost Resolution Support

HC-SR04 2cm-400cm 3.95 4cm Poor

LV-EZ 0cm-645cm 24.95 2.5cm Good

PING 2.5cm-304cm 29.99 4cm Great

Table 8: Comparison among Ultrasound sensors

For this design, HC-SR04 will be enough because the device is assumed to be placed on
the table close to the student, therefore a wider range is not needed. Moreover, due to
the fact that the product will potentially have three more sensors that will get data if the
student is in the study space, having a poor support would not cause problems. Also, the
cost is very accessible and will not overpass the economic constraint.

4.3.3.2. PIR sensor

PIR sensor, also known as Passive Infrared, allows you to sense motion and it is used to
detect if there is a human moving within the sensor range. These sensors use low levels
of radiation and the radiation is divided into two halves where in one half sees more or
less IR radiation than the other so the output would swing high or low.

The PIR sensor would be beneficial to our project when we want to verify that there isn’t
anyone present near the table and the reservation needs to be reset (perhaps due to a
user leaving without pressing the button to finish their reservation). Table 9 displays the
most commonly used PIR sensors.

22

Sensor Range Cost Power Supply

Adafruit Up to 7m 10 5-12V

Parallax 555-28027 Up to 9m 15.64 5V

Seeed studio Mini PIR 2-5m 4.60 5V

HC-SR505 3-7m 3.58 4-20V

Table 9: Comparison among PIR sensors

For this design, the Seeed Studio mini PIR would satisfy the desired requirements, as
our distance needs are not very demanding (edges of a table from the center) and it has
a low operating voltage. The cost is also the lowest making it an affordable and useful
option.

4.3.3.3. Accelerometer sensor

Accelerator sensors can be used to measure the acceleration exerted upon the sensor.
Two data given as output for this sensor are:

• Static Force applied on sensor due to gravity -> orientation detection
• Force exerted upon sensor-> movement detection

For this design we would want to use, in the future, the second data that will output the
sensor. This will help us to detect movement in the table. As stated in the ultrasonic
sensor paragraph, this will allow us to verify that a student is not present in the study spot
before resetting it to ‘Available’. This will be used in conjunction with the other sensors.
Some of the sensors that were considered for this design are shown in Table 10 which is
shown below:

Sensor Sensitivity Cost Power voltage Frequency

MMA8451 2019
ADAFRUIT

4096
counts/g

7.93 1.95V to 3.6V 400kHz

EVAL-ADXL 372z +-200g 26.1 1.6V-3.5V 400kHz

Adafruit-ADXL377 6.5mV/g 24.95 3.3V-5V 400kHz

Bosch-0273.141.148-1NV 4096LSB/g

1.5 1.2V-3.6V 10MHz

Table 10: Comparison among Accelerometer sensors

23

4.3.4. Casing Material Options

There were a variety of options for casing materials especially with new technology such
as 3D printing and Laser Cutting. The casing material for this product did not have any
limitations in comparison to other products where heat and water should be considered.
Yet, these tools were not facilitated for this device, due to restrictions.

There were four main characteristics that this design should have considered when
picking the casing material cost, weight, endurance and accessibility. Since this device
targets the education market, the cost of the device should be low in order to do a mass
production for the demand. Furthermore, as mentioned in the specification requirements,
the weight of the device is light. Also, it should be considered that it will function among
students, so the device has a good endurance to any falls or damages caused by
students. Finally, this material is easily accessible for us to manufacture with and time
effectively to increase our chances of success. Table 11a&b shows the different material
options researched.

Materials Pros Cons Cost

Plastic Accessible
Can have complex design
Easy 3D printing
Not breakable if dropped

Easy to melt under high
temperatures

Low

Ceramic Durable
Stain resistant
Heat resistant
Maintainable

Expensive Set-up
Heavy
Breakable with pressure

Low

Table 11a: Comparison of different casing materials

Materials Pros Cons Cost

Vinyl Durable
Maintainable
Good for high
traffic areas

Lifespan 10 years
Installed over
smooth
underlayment

Low

Wood Accessible
Good aesthetic

Prone to water
damage if no
protection

Low

Material/Stainless
Steel

Durable
Maintainable

Heavy
Short circuit
concerns

High

Table 11b: Comparison of different casing materials

24

We decided to go with plastic as it is easily accessible, malleable, lightweight, and sturdy,
which is perfect for our project. We ended up doing a handmade housing by using plastic
PVC for the case.

Adhesive
In order to connect the pieces of our device together, we needed to use an adhesive. This
adhesive would not have impacted the overall look and feel of the device, but should have
held properly and provided a sturdy product that would not have fallen apart or feel flimsy.
Table 12 demonstrates the options that we researched:

Adhesive Advantages Disadvantages

JB Plastic Weld -Holds extremely well
-Adapted specifically to bond
plastic
-Quick setting time

-Irreversible bond
-Reaction can cause the
plastic to melt and become
disfigured

Plastic Glue Gun -Extremely quick setting time
-Reversible bond

-Can be very messy if not
handled properly
-Poor adhesion, can be
broken
-Takes up a lot of volume

Super Glue -Holds extremely well
-Can bond all materials
-Small volume

-Takes time to set
-Some glues set with a white
color

Table 12: Adhesives comparison

Table 13 is a decision matrix that allows us to choose the best option for an adhesive.

 JB Plastic Weld Plastic Glue Gun Super Glue

Bond Strength 3 1 3

Appearance 3 1 3

Setting Time 2 3 1

Total 8 5 7

Table 13: Decision Matrix Adhesive

4.3.5. Battery and Battery Casing

The Battery must be able to supply enough power to the logic devices and LED
components to allow them to function correctly, while also lasting for as long as possible
and taking up minimal space. In order to access these tradeoffs, a table was formulated

25

to compare different batteries that could potentially power our device. Our desire is for
the device to have a rechargeable battery that can be easily replaced. Also, a stretch goal
for this project would be to allow for a direct connection to recharge the battery from
outside the casing. The first thing we explored in the research for this device was the
battery material.

Lithium Ion vs. Lithium Polymer vs. Nickel-Metal Hydride
For the material of the battery, we looked at the three most common materials for
rechargeable batteries. In terms of popularity, Lithium is a much more popular and widely-
used material, as it can hold more charge than Nickel-Metal Hydride batteries. As far as
Lithium-Ion versus Lithium-Polymer, the final decision was made using Table 14 & 15 to
compare the advantages and disadvantages of each and how it will affect our project.

Type Advantages Disadvantages

Lithium Ion -Higher energy density than
Polymer, can power device for
much longer without need for
recharge.
-Slightly less expensive than
Polymer
-Hold a charge better when not in
use
-Can handle fluctuations

-Slightly larger, bulkier
designs not suitable for
device.
-Lithium Ion batteries more
susceptible for aging-not
good for reliability of
device

Table 14: Rechargeable battery material comparison

Type Advantages Disadvantages

Lithium Ion Polymer -Sleeker design allows for
easier integration into the
device, lighter design.
-Better lifespan than
Lithium Ion batteries.

-Lower energy density
than Lithium ion batteries
-More expensive to
manufacture
-Prone to loss of charge
when not in use
-More susceptible to
damage due to
fluctuations

Table 15: Rechargeable battery material comparison

Since our project requires both size constraints as well as durability and ease of use
constraints, priorities have to be taken in order to select the correct battery. Since long
battery life is more important to this project than size or weight, the Lithium Ion battery
was selected as the ideal battery type. The longer lasting battery and ability to hold and
provide a steady source of power is very beneficial to our power sensitive components

26

such as the ESP8266. The downsides such as weight and size were to be accommodated
in our housing design.

The final battery choice reflected in Table 16 was the Lithium Ion battery Pack provided
by AdaFruit industries. This battery back was small, relatively light, and could power our
device for a significant amount of time before requiring a charge.

Manufacturer Site Voltage mAh Weight

Adafruit Adafruit 3.7 4400 95g

Table 16a: Final Choice Battery

Since we are using an ATmega328P chip, it requires a 5V, the original battery picked was
not used. Instead, we decided to use a 9V rechargeable battery from Battery Junction.
Shown in Table 16b.

Manufacturer Site Voltage mAh Weight

Battery Junction Battery Junction 9V 1200 95g

Table 16b: Final Choice Battery (Actual)

4.3.6. 3D Printing & Software

Since our casing design is very complex and has to contain screw taps, fixtures for custom
PCB boards, and aligns with ordered parts, the design for the case should have been
made using a 3D modeling software which will then be printed using a 3-D Printer.

 4.3.6.1 Software

Fusion360
This program is a cloud-based 3D CAD Program which allows teams to work on projects
together simultaneously. This would be extremely beneficial to our group as it would allow
us to work on it from anywhere. It is also a big plus that Fusion 360 contains a history of
all changes, which can aid with the design process and prototyping. It has been described
as having an easy learning curve and geared toward mechanical design, which aligns
with our objective. It also comes with a 3-year free educational license for students, which
really helps with costs.

Design Spark
Design Spark is a Free 3D Modeling software that is geared more towards hobbyists and
includes a large built-in library. It is also straightforward and easy to navigate, which can
help us prepare a design quickly. However, being free and beginner friendly makes it
somewhat of a simpler software and could potentially be tricky to utilize once we design
the more complex pieces or PCB enclosures.

27

Inventor
Inventor is a 3D CAD software developed by Autodesk, and is geared toward professional
level mechanical design. This is an advantage for us because we will need multiple
structures that will require carefully measured threads. Inventor is also free for Students,
making it a strong candidate.

SolidWorks
Solidworks is a valuable and popular choice for modeling 3D parts. The visuals in
Solidworks outrank similar CAD programs, which can be beneficial in visualizing our
design and making design choices. Also, this program comes in UCF engineering
computers which saves our group time.

Decision
Since none of our group members have much experience with 3D Modeling software,
we decided to go for a software that was powerful enough to achieve our design, yet
intuitive and simple enough to allow us to learn how to use it quickly. With all of this in
mind, we selected to use Fusion360 for this project.

 4.3.6.2 3D Printer & Material

UCF has their own in-house 3D Printers to print materials. There are also other resources
such as maker workspaces or libraries across Orlando.Since there will be many
prototypes as well as trial and error, it would be wise to use a cheap yet sturdy plastic.
Our research narrowed the options down to 2 widely used plastics:

PLA
PLA is an easy material to print, and as common as ABS. It is also biodegradable, which
would help with the marketability of our device However, it is slightly more difficult to
manipulate which could mean it is less resistant to shocks. It also shrinks slightly after
printing.

ABS
ABS is the most common of the plastics, with a slight flexibility and resistance to shocks,
which would be very beneficial to our design as it runs the risk of falling from desk heights.
It is also the cheapest plastic material, but shrinks in contact with air. This requires special
treatment when 3D printing.

Final Decision
For this device we are moving forward with ABS plastic in order to keep the device as
durable and low cost as possible.
Ultimately, we were unable to complete the Case Design using 3D techniques due to UCF
closures related to COVID-19. We did, however stick to PVC and the same adhesives, in
an attempt to stay as close to the original design as possible using traditional techniques.

28

4.3.7. Shape

For the shape of the enclosure, we decided on a few simple shapes, since our time was
limited and we couldn’t spend it on making a complex shape case. Table 17 outlines our
possible case shape options as well as pros and cons for each:

Shape Pros Cons

Cylinder -Structurally strongest shape
-Easily viewable LED strip
-Takes up less space

-If tipped over, can roll off of desk and
become damaged

Cube -Hardest to accidentally tip over
-Structurally Sound
-Larger space for components

-Shortest, hardest to see from a far
distance
-Takes up more space proportional to
its height

Rectangular Prism -Height will allow for easy
viewing from far distances

-Easiest to tip over
-Rectangular design not as attractive
-Less space to house components

Table 17: Comparison chart for Enclosure Shape

4.3.8. Tamper Proofing

Since this product will be unsupervised for most of its life, it requires safety precautions
against any actions that are not meant to be for normal users. These non-user actions
include using the on/off button and using the keypad without permission

Since the on off button will be a push button with two states, it allows for the button to be
concealed within the device, with access limited to those who remove the outer enclosure
and expose the inner workings of the device. However, the outer enclosure will be
attached with security screws and so will not be easily accessible except for those with
the right key.

This will prevent everyday users from accidentally turning the device off and limit the
number of visible buttons to allow for easier operation. The Keypad receives input, but it
can be ignored as part of the software that is flashed into the microcontroller, preventing
unwanted interference from keypad presses.

Ultimately we were not able to implement these Tamper Proofing ideas. We could,
however, implement the On/Off switch withing the enclosure as well as a seal tight cap
that is located under the device to limit access to the electronics.

29

4.3.9. Microcontroller

For all the input processing and the logic behind the reservation system on the
hardware side, we researched ARM Microcontrollers. These microcontrollers also
controlled switches that provides power to LEDs. Our research narrowed our choices
down to the following boards:

NUCLEO-L011K4
This is a development board for the ARM based STM32 Microcontroller, which is a
popular alternative to Arduino microcontrollers and considered a very good starting point
for beginners of ARM programming. Since it is such a popular alternative to arduino, there
is a lot of community support and resources available for programming the STM32
Microcontroller.

STM32F103C8T6 ARM STM32 Development Board
This board uses the same popular STM32 Microcontroller. The only differences between
this board and the NUCLEO-L011K4 is that this board has less complexity, further
reducing the cost but at the same time increasing the difficulty of programming and of
preventing electrical damage to the microcontroller.

MSP-EXP430G2ET
The MSP-EXP430G2ET Microcontroller one of the easier development boards to work
with, using the M430G2553 Microcontroller. This board is not only heavily documented
by Texas Instruments and an active community of Makers, but it comes with a very
comprehensive debugging software (Code Composer Studio) which can make the initial
testing process extremely easy.

Raspberry Pi Zero W
The Raspberry Pi Zero W is an extremely powerful yet small development board with built
in Wi-Fi capabilities and a large community of support and example projects. Since this
device was designed with Wi-Fi and portability in mind, It meets the needs of our project.

Arduino UNO Wifi
The Arduino UNO Wi-Fi board is one of the most popular and common boards for
beginners. That being said, it pays for simplicity and ease of use with low processing
power and capabilities. There was a model introduced which contains an integrated Wi-
Fi module, and with an extremely large community and open source software behind it,
there is a lot of knowledge available for working with this microcontroller.

Microcontroller Comparisons
Although there are many boards available to take advantage of today’s smallest and most
potent microcontrollers, we were able to narrow our selections down to a few. Table 18
highlights the advantages and disadvantages of each controller to weigh their
strongpoints and weak points. Table 19 is a technical comparison of each microcontroller
based on a variety of essential fields.

30

Microcontrollers Advantages Disadvantages

Arduino UNO Wifi -Wifi Capabilities integrated
- Comes with easy to use
Energia software
-14 I/O Pins, 5 PWM

-Higher Cost 45$
-Lower storage space (RAM and
Flash)
-Lowest clock Speed

Raspberry Pi Zero
W

-Wifi Capabilities integrated
-Expandable Flash Memory
- Small Dimensions

-Prone to crashes due to
faults/failures
-Hardest to program

MSP430G2ET - Cost efficient
- Code Composer Studio for
advanced debugging

- Medium difficulty to program
-Not as compatible with products
that are not associated with
Texas Instruments

STM32F103C8T6 -High performance STM32
microcontroller
-Easy access Debug Ports

- Minimal Components
- Little support, not as much
documentation

NUCLEO-L011K4 -High performance STM32
microcontroller
-Micro-USB Connection

- Little support, not as much
documentation
- Long lead time

Table 18: Microcontroller Advantage Comparisons

Technical
comparisons

Arduino
UNO
Wi-Fi

Raspberry
Pi Zero W

MSP-
EXP430G2E
T

STM32F103
C8T6

NUCLEO-
L011K4

Operating
Voltage

5V 5V 1.8V to 3.6V 2.0 - 3.6V 1.65 - 3.6V

DC Current 20mA 16mA 15mA 25mA 16 mA

Digital I/O pins 14 40 47 38 38

CPU clock
speed

16 MHz 1 GHz 25 MHz 72 MHz 32 MHz

Flash Mem 48 kB Expandable 128 kB 128 kB 16 kB

Wi-Fi module Yes Yes No No No

RAM 6.14 kB 512 MB 8 kB 20 kB 2 kB

Weight 25g 9g 80g 8.5g 7.6g

Cost $44.90 $10.00 $10.37 $1.69 $10.32

Table 19: Microcontroller Technical Comparisons

31

Since our project is not particularly hardware heavy, our microcontroller won’t require a
large amount of RAM or Flash memory. However, whatever processes we do require
should be done as quick as possible as our queries concerning the microcontroller are
time sensitive. Another result of our project not being hardware heavy is the fact that there
will not be as many peripheral devices attached to the microcontroller, so GPIO numbers
are not as important. However, they need to be enough and specialized enough to support
multiple PWM signals and buttons.

These factors were accumulated into a decision matrix in Table 20 in order to help choose
the ideal microcontroller for this project. Taking into account all of these ideas as well as
the information from Table 18 and 19, The highest-ranking microcontroller turned out to
be the MSPEXP430G2ET. Its ease of use as well as its cheap cost and wide community
of support allows it to be an easy starting point for this project. The small size and large
quantity of pins also gives it greater flexibility and usefulness over other microcontrollers.

Decision
matrix

Arduino Raspberry Pi
MSPEXP430-

G2ET
STM32-

F103C8T6
NUCLEO-
L011K4

Cost 1 3 3 4 3

Ease of Use 4 3 4 2 2

Power Use 1 2 3 4 4

Wifi Enabled 2 2 1 0 0

Size 1 2 3 4 4

Pins 1 3 4 2 2

Total 8 15 19 16 15

Table 20a: Microcontroller Decision Matrix

However, the team has decided to move on with the ATmega328P from the Arduino
UNO board manufactured by Adafruit due to simplicity and compatibility with the Wi-Fi
module chosen. Moreover, it has just the basic requirements the devices needed, so no
waste of memory, pins, cost and DC current. The Atmega328P was obtained without
bootloader software in order save money.

Manufacturer Model Cost Voltage Pins

Microchip
Technology

ATmega328P $2.08 1.8V to 5.5V 28

Table 20b: Microcontroller used in actual device

32

Keypad
This device requires an authentication process, and since the reservation button is used
specifically to claim a reservation, there potentially needed to be a second form of input
to verify that the use of the button is not simply an error or an unwanted user. This can
best be done by using a simple keypad. Today’s market has allowed for multiplexed
keypads to be available for an extremely low price, and with the capabilities of
microcontrollers to easily process these inputs, it is a feasible task to establish these
keypads.

One option was to use a smaller version that consists of only 4 numbers. Although slightly
less secure (4^n possible combinations), it is much smaller and also less expensive. The
other option was searching for alternatives for this authentication process. The pros and
cons of using a keypad have been laid out in Table 21:

Type Pros Cons

With Keypad -Easier to implement
authentication
-Less reliance on software

-Bulky keypad potentially unattractive
-Need workarounds for when keypad is
pressed when not needed

Without
Keypad

-More Sleek/ Attractive
appearance
-Less reliance on hardware

-Need to devise a more complex
authentication system based entirely on
software

Table 21: Comparison chart for Keypad

The final product was decided to be a 4 button keypad specified in Table 22.

Manufacturer Model Cost Weight Cable Length

Adafruit 1332 $2.95 2.83g 3.53”

Table 22: Final Choice for Keypad

4.3.10. Wi-Fi module

Since the device needed to communicate with the database, it required a Wi-Fi module
aside from the Microcontroller to add network connectivity. The Wi-Fi module needed to
have a low power mode to consume as little energy as possible when not in use, as
transmitting data via Wi-Fi tends to be very power consuming. Our research had narrowed
our results down to 2 different modules.

CC3100 TI
The CC3100 by Texas Instruments is a Wi-Fi module that it tailored to provide an easy
IoT experience, supported by many resources from TI themselves, as well as a
development board model designed to fit over the MSP-EXP430G2ET. This would have
allowed for easy debugging and less risk of damaging physical components from

33

improper wiring. One downside, however, was that the development board is only suited
for an MSP Launchpad platform, and any sort of separate with this board would be
extremely difficult as the circuitry for this device was very complex.

ESP8266
The ESP8266 is a popular Wi-Fi module that is considered a SOC (System on Chip)
device. The microcontroller embedded in this Wi-Fi module is strong enough to handle
some basic processing and can even support input from other GPIO pins. Although it is
a popular board, there is no proper central support base like the CC3100, making it slightly
more difficult to program and interact with the board. The technical specifications of each
board are compared in Table 23 and a decision matrix was made as Table 24.

 CC3100 ESP8266

Cost $23.38 $4

Operating Frequency 2.4 GHz 2.4 GHz

Input Voltage 3.3V - 3.6V 2.5V - 3.6V

Average Current Consumption 100 mA 80 mA

Table 23: Comparison chart for Wi-Fi Modules

 CC3100 ESP8266

Cost 1 3

Average Current Consumption 1 2

Ease of Use 3 1

Total 5 6

Table 24: Decision Matrix for Wi-Fi Modules

The final decision was to use the ESP8266. Overall, it is easier to implement, cheaper,
and best suited to our needs. Since we did not require complex tasks and prioritize power
efficiency over processing power, the ESP8266 will be a better fit than the CC3100. Table
25 shows the specifics of our final choice along with the price.

Manufacturer Model Price Site Weight

Espressif ESP8266 $6.95 Sparkfun 1.9g

Table 25: Final Choice Wi-Fi Module

34

TI Code Composer Studio
Code Composer Studio is the main and most popular IDE for the Texas Instruments
MCUs. This code composer is a powerful tool to write code on their platforms due to its
effectiveness. It implements C code but marks it up. It is very efficient when it comes to
determining errors caused by native support of a device.

It is very popular due to its ability to debug and test code used in other C IDEs.
Furthermore, it is efficient to program every part and peripheral attached to the
microcontroller which for this project will be required. Table 26 highlights the advantages
and disadvantages of Code Composer Studio.

Advantages Disadvantages

Texas Instruments creates CCS Errors due to low time production

Natively support all MSP 430 series Not a high quality of error reporting which
slow down development.

Familiar with C code used in TI’s examples Susceptible to crashes

Table 26: Advantage and Disadvantage for Code Composer Studio IDE

Arduino IDE
For this project, we decided to use Arduino IDE instead of the Code Composer IDE for
the microcontroller. This IDE is by far the most popular for this product for many reasons.
There are several amounts of documentation and example code for this IDE which makes
it simpler and more effective to work with. Moreover, it is powerful, user friendly and easy
to understand. In this project, rapid prototyping was a factor since there was no need to
worry about re-flashing hardware. Table 27 outlines the advantages and disadvantages
of using Arduino IDE.

Advantages Disadvantages

Powerful IDE which supports Wifi Module Lacks code prediction

Simple and aesthetic Extremely simple which can be defined
as a text editor with a compiler

Several resources Lacks of error highlighting

Effective IDE Natively supports Arduino
microcontrollers

Table 27: Arduino IDE Advantage table

35

4.3.11. Serial Communication Technologies

SPI - Serial Peripheral Interface
Developed by Motorola, the SPI is a synchronous, full duplex master-slave-based
interface. The synchronous part of this is that it uses separate data lines and an oscillating
clock that keeps the data in sync. Since the clock is oscillating, meaning it has a rising or
falling edge, it will start looking at the data line after it looks at the edge in order to read
the next bit. The SPI bus has four signals - 1) master in slave out (MISO), 2) master out
slave in (MOSI), 3) serial clock (SCK), and 4) active-low chip select (/CS), as described
and pictured below:

Master in slave out- a unidirectional signal that sends data from the slave to the
master device.

Master out slave in- also similar to the master in slave out, in terms of unidirectional
signal, but the data is from the master to the slave.

Serial clock - the clock that synchronizes the signals, created by the master device.

Active low chip select - this tells the slave that it should wake up/power on in order to
send/receive data, if there are multiple slaves that is.

When it comes to reading data at the edge of the clock, there are a couple of ways that
the SPI accomplishes this, as the master can select the clock phase and polarity, which
is represented as bits - the CPHA and CPOL bit, respectively. The CPHA bit is where the
falling or rising edge of the clock is used to shift or sample the data, whereas the CPOL
bit represents the transition of the chip selection for high to low end of the transmission,
and vice versa. This leads to 4 possible states for sampling data:

SPI Mode 0 (Logic low clock polarity)
CPOL = 0, CPHA = 0: Data is sampled on the rising edge, shifted on the falling edge.

SPI Mode 1(Logic low clock polarity)
CPOL = 0, CPHA = 1: Data is sampled on the falling edge, shifted on the rising edge.

SPI Mode 2 (Logic high clock polarity)
CPOL = 1, CPHA = 0: Data is sampled on falling edge, shifted on the rising edge.

SPI Mode 3 (Logic high clock polarity)
CPOL = 1 CPHA = 1: Data is sampled on the rising edge, shifted on falling edge.

A popular reason that the SPI protocol is popular is that it is a simple protocol, such as a
shift register.

36

Figure 9: Multi-slave SPI configuration

As shown in the Figure 9 above, we can have multiple slaves in the SPI protocol, which
required multiple slave select lines. This is one of the ways we connected multiple slaves
to an SPI bus, the other way is to connect them using daisy chain method, in which a
single slave select line is used, where if the data was sent, it results in all the slaves being
activated simultaneously. Unfortunately, this required enough data to reach all of the
slaves, as it overflows from slave to slave. This is situation specific, where it is mostly
used for output only situations, such as using LEDs.

I2C - Inter-Integrated Circuit
I2C Communication was developed by NXP Semiconductors (formerly Philips
Semiconductor) in 1982. Its main usage is for low speed communication between different
integrated circuits. Like SPI, you can connect multiple slaves to a single master, which
can be useful in certain cases such as having multiple microcontrollers logging data to a
single memory card. I2C only uses two wires to transmit data between master and slave:
Serial Data (SDA) and Serial Clock (SCL). Serial Data is a data line between the master
and slave, while Serial Clock is a line that transmits the clock signal. I2C also happens to
be synchronized as well, where the bit output is controlled by a clock signal, which in turn
is controlled by the master, as shown in Figure 10 below:

37

Figure 10: Illustrative diagram of I2C Connection

In terms of data transmission, data is transferred in messages, which are broken into
frames of data - each frame contains the address of the slave, and the message that is
being transmitted (Data Frame 1 and 2), as shown below in Figure 11.

Figure 11: Message breakdown found within I2C

Breaking down each part found within the message, we can identify a few important
segments:

Start Condition: the Serial Data line shifts from a high voltage to a low voltage before
the Serial Clock line shifts from high to low, which signals the start of the message
transmission.

Address Frame: It is a 7 or 10 bit binary address segment that identifies the slave
when the master wants to communicate to it.

38

Read/Write Bit: A single bit that determines if the master is sending data to the slave or
needs to read from it.

ACK/NACK Bit: An acknowledge/no-acknowledge bit that shows if the data frame was
successfully received or not.

Stop Condition: the Serial Data line shifts for low voltage to high voltage after the
Serial Clock line shifts from low to high, which ends the message transmission.

UART - Universal Asynchronous Receiver/Transmitter
Created by Gordon Bell, the UART is a computer hardware for asynchronous serial
communication where the transmission and data speeds are adjustable. Its main
purpose is to transmit and receive serial data - using only two wires in the process as
well, similar to I2C. When it comes to communication, two UARTs directly communicate
with each other, as shown in Figure 12.

Figure 12: Sample UART diagram

As seen in Figure 12, there are only two pins - Tx and Rx, which stand for transmission
and receiving. Unlike SPI and I2C communication protocols, the lack of a clock pin also
means that it transmits data asynchronously, and instead uses start and stop bits to the
data packet, so the other UART device knows when to start reading the start of the
message. This can be specified by the baud rate, which determines the speed of the
data transfer, expressed in bits per second (bps). Both UART devices must have the
same baud rate, and is only limited to 2 UART devices, as they cannot have additional
slave devices.

In terms of communication, UART communication is sent in the form of packets. Each
packet as shown below in Figure 13, has the following:

39

Figure 13: UART data transmission packet

Start Bit: Initially, the UART data transmission is at a high voltage level when no data is
transmitted. In order to start transmitting data, the UART has the transmission line from
high to low voltage, and starts reading the bits in the following data frame.

Data Frame: The data frame is where the actual data is being transmitted. It can be
between 5-8 bits if a parity bit used, and if not, then the entire 9 bits can be used. In the
majority of cases, the data is sent with the least significant bit first.

Parity Bit: It can be used to determine if the transmission has errors or not. If the parity
bit is a 1, which is an odd parity then it means that the bits in the data frame should be
equivalent to an odd number, suggesting it is free of errors. However if the parity bit is 0,
and there are an odd number of bits in the data frame, it suggests that the bits in the
data frame have changed in the UART.

Stop Bit: In order to signal the end of the data packet, the UART drives the
transmission line from a low to high voltage for up to two bits.

Now that we know what is being sent out in the UART transmission packet, here’s the
following steps of how the transmission works:

1. The UART transmits data in parallel from the data bus.
2. The transmitting UART adds the start bit, parity bit, and stop bit to the data

frame.
3. The entire packet is sent from the transmitting UART to the receiving UART,

serially. The receiving end of the UART samples the data line at the pre-
configured baud rate.

4. The receiving UART converts the serial data into parallel data and transfers it to
the data bus on the receiving end.

Conclusion for Serial Communication
Since we are using not that much supporting peripheral devices in terms of slave
devices, we are using UART communication as our main protocol.

40

4.3.12. PCB Design Consideration

When it comes to designing a PCB, there were many considerations to include, such as
size and shape, electrical noise, thermal management, and placement of components -
determined the final outcome of the board production and quality:

Size and Shape
The board shape and size was largely determined by the construction of the device.
However if there was extremely limited space, we may have to use some flexible boards,
which would have driven up the cost of the PCB. There were also other needs for needing
multi-layer boards, which also could have driven up costs as well.

Electrical Noise
Electrical noise usually refers to shifts in current/voltage that is random has undesired
effects which can lead to unwanted output in the circuit design. We wanted to reduce
these unwanted effects by covering the board area with power and ground planes - a
general good practice is to keep a face for the power plane and one for the ground plane.
When it comes to traces, we had to keep them as small and thin as possible. We also
had to keep the digital and analog circuitry apart from each other on the PCB.
The use of capacitors, specifically high-quality tantalum-polarized capacitors, was also
valuable to filter noise from power and regulator supplies. And of course, we never used
90-degree turns on traces - the general practice was 45 degree trace around corners.

Thermal Management
When current runs over a trace or a component, heat is usually dissipated. The resulting
heat is dependent on some factors, such as circuit design, power, and device
characteristics. In order to reduce thermal resistance, we started with using the formula:

𝜃 = 𝑡/(𝐴 • 𝐾)

Where,
t = is material thickness

K = thermal conductivity factor
A = cross sectional area

There were a couple of ways we could have reduced thermal resistance by adding
thermal vias for vertical heat conduction, using thinner PCBs to reduce thermal paths,
and using thick tracks/copper foil for horizontal heat conduction.
In terms of component placement, we can consider placing components that involve
plenty of power usage in areas where heat can be best be removed. Some general
principles is to place power heavy components around the middle of the PCB area, in
order to make sure there is enough space for air circulation. Small sensitive components,
such as transistors and integrated circuits, can best be placed in low-temperature areas.
There are some physical thermal management solutions for PCBs: the use of thermal
vias and heat sinks:

41

Thermal Vias
In terms of structure, a penetrating hole is opened into the board and if the board is double
sided, and single layer board there is a copper foil that connects the bottom and top
surfaces, which results in a lower thermal resistance

The recommended thermal via size is about 1.2 mm, and should be placed below the
heat dissipating plate on the bottom surface of the component. It is also important to note
that the vias be as close to the IC as possible.

Heat Sink
We had to know the difference of what material that we were using in the heat sink: copper
or aluminum. Yes aluminum is a very popular choice for heat sinks, but there are some
material and cost considerations for both. For copper material, they actually have more
conductivity than aluminum (231 BTU vs 136 BTU for aluminum). Unfortunately in terms
of weight, copper is more dense than aluminum (8940 kg/m^3 vs 2712 kg/m^3 for
aluminum), which plays part of a reason why aluminum is a very popular heatsink on the
market. The same goes for cost as well: aluminum is significantly cheaper than copper
($2463.00 per metric ton vs $6939 per metric ton for aluminum).

This information is summarized in Table 28:

 Aluminum Copper

Weight 2712 kg/m^3 8940 kg/m^3

Heat Conductivity 136 BTU 231 BTU

Cost 2463.00 per metric ton 6939.00 per metric ton

Table 28: Summary of Materials Comparison

Given the comparison between the two materials, we can determine that we are using
aluminum as the heatsink material.

Placement and Routing
The size of the PCB board is limited depending on our application, which means we had
to consider how we place our components. There are some general practices that should
be followed: keep surface mounted components should be on the same size of the board,
and any through hole components should be placed on the top of the board, in order to
reduce the number of assembly steps. In terms of orientation, similar components in the
same direction to reduce soldering errors:

We also have to consider the use of through hole components and surface mount
components as well - ideally we would wanted to use the majority of surface mount
components for a professional presentation, and to keep the overall cost low. However,
surface mount components are harder to assemble since, the team did not use an

42

assembly company, we decided to use through hole components and only the voltage
regulators as surface mounted.

We also had to consider routing best practices as well - we had to keep PCB traces short
as short and direct as possible between components - if we have the component
placement forces a horizontal route trace on one side, then we had to route a vertical
trace on the opposite side. For net widths, we needed to provide a 0.010’’ for low current
digital and analog signals. For traces that carry more than 0.3 amps should be thicker.
For calculating trace widths, there were also multiple various trace width calculator online
that make it simple for the user to determine.

4.3.12.1 PCB Software Tools

In this section, we are going to go over some tools used for PCB creation and design.
Some of the most popular software tools that we will cover are Eagle, EasyEDA, and
Altium.

Eagle
It is an electronic design automation tool with scripting abilities complete with printed
circuit board layout and schematic capture, and computer aided manufacturing abilities
(e.g. visualize your PCB in the final build stages). It has some import support from other
PCB tools, such as Altium. Eagle will become our preferred platform of choice, as we are
familiar with some aspects of the software from Junior Design, and the fact that we have
a free student license for it gives us more access to advanced features. Figure 14 shows
the interface for the Eagle Software.

Figure 14: Eagle PCB tool

EasyEDA
Easy EDA is also an electronic design automation tool with the ability to create public and
private schematics, simulations, and printed circuit boards - instead of having the user

43

install it on their computer, it is all online, meaning its free to use and accessible from
anywhere! It is extremely user friendly and good starter platform to use if you don’t have
enough knowledge about PCB design. In terms of library support, it has more than half a
million libraries with footprints and symbols. It has also multi program import support such
as EAGLE, LTspice, and Altium. Figure 15 shows the interface.

Figure 15: EasyEda User Interface

Altium
Many used by industry professionals, Altium does have a higher learning curve but is
extremely user friendly, using the Windows standard behavior, has a flexible release
management tool, a superior 3D visualization tool, and a fairly decent amount of
import/export support, such as OrCAD, Eagle, DXDesigner It does have a very high
license cost (~$7000) but for students there is a free evaluation period, and afterward it
is only $100/year. Figure 16 shows the Altium User Interface.

44

Figure 16: Altium User Interface

4.3.12.2 PCB Fabrication

Once our PCB design prototype has been designed, we need to look for a company to
fabricate it. Some of the main points we used to make our decision was lead time and
cost. As this project is time sensitive, we will need to fabricate our PCB with a company
that can deliver a PCB as fast as possible, especially considering the fact that our first
PCB design will certainly be suboptimal due to our lack of experience. We will also factor
cost into this project since we want this to ideally be purchased as multiple devices to set
up a unified system. This section will cover the pros and cons between three known PCB
manufacturing and assembly companies known throughout Senior Design (one in China,
two in Orlando) - JLCPCB, Quality Manufacturing Services, and FermiTron.

JLCPCB
According to JLCPCB’s site, their company is China’s largest PCB prototype enterprise
which specializes in small batch PCB production and quick PCB prototype turnaround.
In terms of fabrication services and production time, for a 1-2 layer board (which will be
what we will most likely be using) it has a 1-2 day production time. Since it is shipping
from China, we will anticipate a 15-20 day arrival time, which is not good for any last
minute PCB emergencies. For pricing, it is only $2.00 for 5 1 to 2 layer boards, up to
100x100 mm in size, making it extremely cheap- but the shipping cost will add a bit more,
depending on the amount of boards that we order plus any additional customizations.
They also offer surface mount (SMT) assembly at their facility for a $7.00 core engineering
fee, using their own components however.

QMS (Quality Manufacturing Services)
Based in Lake Mary, FL Quality Manufacturing Services is a full service Electronics
Manufacturing provider, as an employee-owned company. Some services that they offer
are PCB Assembly (throughhole/surface mount), rapid prototyping through their Fast
Track program, and testing capabilities such as flying probe, in-circuit, functional, and

45

device programming. Unfortunately, we do not have a price estimate, as we have to
request a quote through a representative/website.

FemiTron
Born from the UCF Business Incubation Program — FermiTron’s services include
microcontroller design, FPGA design, RF design, PCB Layout, prototype testing, and
mechanical design, just to name a few. Just like QMS, there is a quote that you have to
get as well in terms of pricing, as their process is extremely involved - an inquiry phase,
a discovery phase, a proposal phase, and a project kickoff phase.

Based on the overview of the PCB manufacturing companies, we will utilize JLCPCB for
our initial PCB design, and if necessary we will use QMS as an emergency backup if we
need printed PCBs on the ready.

4.4. Software Design Research

In this section, we will be going in detail and understanding different technologies
available for us to use in our project. We will be discussing front-end and back-end
possible technologies and comparing their abilities, functions, ease of use, and costs to
choose the best options for our device.

4.4.1. Front-End

For front-end development there are plenty of programming languages to choose from.
We looked at three different ones that work for mobile applications (iOS and Android) -
JavaScript, Swift, and Java.

When it comes to mobile app development, there are factors to consider between native
options and cross-platform solutions. If Swift and Java were being used, then we can only
develop for a specific Operating System - iOS or Android respectively. On the other hand,
if we used a cross-platform solution, then we can use JavaScript as our programming
language and use React Native as our framework. This option allowed us to develop for
both iOs and Android at the same time. In the next sections, we will be discussing these
factors in details to understand which option was the best for our project:

4.4.1.1. Cross-Platform vs Native Apps

Performance
Native apps have a higher performance than cross-platform apps. That is because native
apps have been specifically made for a specific platform, and this means they are
following the quality guidelines and HMI guidelines.

User Experience
Native apps follow certain protocols depending on the operating system. They follow
Apple’s HMI guidelines and Google’s. On the other hand, cross-platforms cannot do that

46

and they need to have a unified UX for the application, otherwise, it would be
uncomfortable for the user if this one follows the guidelines from one or another.

Functionality
Native apps have access to all native APIs depending on their operating system. These
are compatible with either Google or Apple products as well. These apps can even be
used without an internet connection. On the other hand, there is limited functionality for
cross-platform apps. This is because cross-platform apps do not have access to native
APIs. Sometimes they might have limited access to OS features and might always need
an internet connection to be used.

Support
The benefit of building a native app is that mobile app could be featured in either one of
the stores. Apple and Google will always encourage developers to use their platforms.
For cross-platform apps, there are always communities on the internet if there is ever a
problem and since there is only one codebase, it is easier to make changes to the app.

Updates and Maintenance
For native apps, there has to be great management between different operating systems.
If there is a change being made to one of the apps, then the change must be reflected on
the other one as well. On the other hand, cross-platform apps are easier to update since
there is only one codebase.

Development
In regard to native apps, it takes more time to develop these applications. You cannot
reuse code from one platform to the other, and essentially you would need to start from
scratch on the other operating system. On the contrary, cross-platform is a lot quicker to
develop since code can re-used and there is no need to start from scratch.

Decision Matrix
Table 29 is a decision matrix between Native Development and Cross-Platform
Development.

47

1 - Lowest; 2 - Good; 3 - Best

Decision matrix Native App Cross-Platform

Performance 3 1

User Experience 2 1

Functionality 2 1

Support 2 3

Cost 1 3

Updates/Maintenance 1 3

Development 1 3

Team Knowledge 1 2

Total 13 17

Table 29: Decision Matrix Application

4.4.1.2. Front-End Programming Languages

Now that we have covered native apps vs cross-platform apps, it is important to go in
detail with which programming language we would choose. In the next sections, we will
be going over the three languages and frameworks we mentioned before: Java, Swift and
JavaScript with React Native.

Java
Java is a general purpose programming language. It is used for several applications, and
in this case, for developing an Android application. Android is an open source software
platform and Linux-based operating system for mobile devices. These Android
applications can be developed using the object-oriented programming language Java and
Android SDK. There are some benefits that it can bring onto the table:

Object Oriented Programming
Java utilizes object-oriented programming, which helps to reuse objects in other
programs, it prevents errors have hiding that particular object’s information that should be
accessed, it makes programs preplanned and organized, and offers legacy code
modernization and easy maintenance. In addition, object oriented programming offers a
simple syntax and a mild learning curve, which makes a language easy to read, write,
and maintain. There are also standards for enterprise computing, which supports many
libraries, and has plenty of integration support.

48

Reduced Security Risks
Although Java may some vulnerabilities, as seen in the news recently, there are some
security features that it implements: it doesn’t have pointers, which reduces unauthorized
memory access and it has a security manager, which controls the application where it
can specify access rules, which helps to run Java applications in a ‘sandbox’ which
reduces any outside security risks.

Development Platform - Android Studio
Java applets can run anywhere (known as Write Once Run Anywhere) and once you write
this application and compile it into bytecode, you can run it on any platform that has a
Java Virtual Machine (JVM) included in it. The JVM serves as a buffer between the code
and the hardware. To develop Android based applications, we can use Android Studio,
which is an IDE (Integrated Development Environment) where we can save/edit projects
along with application emulation support (Android Virtual Device) and their Real time
Profiler, which allows to show CPU, memory, and network activity from your application,
as shown in Figure 17 below. So, there are some drawbacks however - the program is a
huge pain to install and setup, as the setup itself is nearly 1 GB! It also has limited
documentation and support, despite the fact that it was launched by Google in 2013.

Figure 17: The Android Studio User Interface

Swift
A mobile development language for iOS applications and a successor of Objective-C and
C++, it is claimed that Swift is faster and better than Objective-C. They are designed to
run on watchOS, macOS, and tvOS. There are three key areas that Swift addresses:
cleanliness and intuitive language, readability and concision, and ease of maintenance:

49

Cleanliness and Intuitive Language
From a syntax standpoint - Swift looks like plain English, which makes it easier for
developers to use the language - which means developers with previous language
backgrounds such as from C++, Java, and Python would find it simple to transition to this
language.

Ease of Maintenance
The file structure for Swift works with minimal interdependencies since the way it works
is using a solitary code record which uses a .Swift file, consolidating an Objective-C
header (.h file) and an execution document file (.m file). By using this code record, Swift
has less code maintenance requirements.

Performance
Swift has a focus in performance. It is designed to outperform its predecessor. There is a
40% increase in performance compared to Objective-C. In addition, Swift ACR
determines which instances are no longer needed in the program and gets rid of them on
the user’s behalf. This allows the user to increase the CPU performance and there would
not be any lagging.

Development Platform - XCode

Figure 18: XCode Development User Interface

XCode is an integrated development environment exclusive for IOS, macOS, watchOS,
and tvOS applications. It is on the Mac App Store for free for macOS Mojave users. The
user interface is shown above in Figure 18. With their application builder - SwiftUI there
are some pros and cons for using the application language:

50

Pros

● Real-Time preview
● Simplified animations
● Simple Code using Declarative syntax
● UI Design Tools
● Open Source - plenty of community support

Cons

● Only on IOS platforms - meaning we would have to develop a separate code base
for Android

● Relatively new language
● Poor interoperability with IDE/Third Party tools
● SwiftUI interfaces are basic

JavaScript with React Native Framework
Created by Facebook, React Native is an open source framework for developing cross
platform mobile applications between IOS, Web, Android, and UWP. React Native
eliminates the need for HTML, instead using JavaScript libraries for building user
interfaces.

Pros:

● Only requires Javascript - no other languages needed!
● Fast to setup and start building
● No need to maintain multiple codebases
● Hot Reloading
● Fast Applications

Cons:

● Lack of custom modularity
● Not so smooth navigation
● Binded to Facebook rules

Maintenance and Updates
Maintenance with React native is somewhat a challenge, as since there can be separate
issues on Android and IOS platforms, which can lead to two separate branches of the
codebase in order to fix separate issues. Dependencies are also another issue as well -
you have to make sure the React Native dependencies portion are updated, along with
its other third-party dependencies as well, which can increase the likelihood of introducing
bugs in the codebase. After making sure that the updates are applied, you also have to
check that nothing in your code breaks as well when it comes to testing.

Performance
React Native applications work better when its CPU usage is optimized, however when it
deals with graphics animation and processing, it struggles a bit. With this issue, Reactive
Native went ahead and allowed the developers to embed native code into the application.

51

Development Platform
React is extremely simple to setup - just install the framework using NPM (Node Package
Manager) through the terminal line, and after that you can run React Native commands
from the terminal. In terms of project setup and configuration, the starter guide assumes
that you already have the environment setup for IOS and Android and just jumps into
creating a new project for IOS projects that is. For Android projects, there is no guide for
creating one in its docs.

Support
Since its launch in 2015, React has been gaining traction ever since - there is an
established community on Github and there are meetup conferences on React all over
the world - the most recent one being React Native EU in Poland.

4.4.2. Back-End

For the database, selection is key in determining which database provided flexibility, cost,
and ease of setup. We analyzed the three major database cloud providers on the market
today - Amazon’s AWS, Google Firebase, and Microsoft Azure.

4.4.2.1. Database Cloud Platforms

Amazon’s AWS Amplify
According to Amazon’s description of their Amplify service, it claims that it simplifies the
process every application development - testing, building, and monitoring. It helps to
easily add configuration of the application, such as push notifications, however additional
features would have cost more. Its simple API helps you build a mobile application in
about 10 minutes.
Their most prominent feature is their Amplify Console, which provides a workflow based
on Github for hosting fullstack serverless web applications that have continuous
deployment support. This helps to simplify backend and frontend deployment by
simplifying the code repository (e.g. Github) and can be deployed in every commit of
code, all in a single workflow. We can also connect a custom domain.
For pricing, the pricing is based on two features - deploy and build, and hosting and split
into two pricing models:

Free Tier

● Build and Deploy- 1000 build minutes per month
● Hosting - 5GB stored/month, 15 GB served/month

Pay as you go

● Build and Deploy - $0.01 per build minute
● Hosting - $0.023 per GB stored per month, $0.15 per GB served

52

Google Firebase
Owned by Google Cloud, Firebase has many features such as: Test Lab (testing the
application), Google analytics (unlimited and free application analytics), and Cloud
Functions (run code without managing servers). According to some reviews some positive
reviews are seamless user authentication API and management, is one of the cheapest
cloud service providers, great documentation, and some support for integration libraries.
There is real time data support as well.
There are some issues however, there is limited Javascript SDK support, as if you close
the web/mobile application that you are working on, the data keeps going, which means
you needed to develop a way to implement a cache system. There also is not a way to
query your data properly, as it is only limited to basic filtering and pagination. So in the
case if you need to develop a search functionality, you have to download the complete
data and use it in the client through a server or a third party service.
For pricing, it is split into three tiers: Spark, Flame, and Blaze Plan. Since the Blaze Plan
is a pay as you go service, we concluded that costs would have been higher than the
Flame Plan, so we had to look at the Spark and the Flame Plan themselves (cost will be
per month):

Spark Plan - Free

● Hosting for up to 1 GB
● 100 simultaneous database connections with 1 GB of storage
● 5 GB of storage
● 10 tests/day
● Phone Authentication for 10k/Month

Flame Plan - $25 a month

● Hosting for up to 10 GB
● 200k simultaneous database connections with 2.5 GB of storage
● 50 GB of storage
● Phone Authentication for 10k/Month

Microsoft Azure
Azure has excellent compatibility with Linux and Windows operating systems. With some
features of Azure come with scalability - we can easily build websites with PHP, Node.js,
or ASP.NET and quickly deploy in seconds. There are also simple backend solutions for
mobile applications, such as user authentication, and a structured storage system in a
snap. Some other features associated with Azure are cloud services, caching, virtual
network, CDN (content distributed network), and business analytics just to name a few.
Unfortunately, Azure has a high cost associated with, so it is better suited for enterprise
organizations.

When it comes to authentication, there are some considerable options. Using Azure
Active Directory, they can be used B2B or workplace applications. If working on the
consumer side, they provide support for some third party sources such as Google and
Facebook’s API.

53

For pricing, they are split into 6 tiers: free, shared, basic, standard, premium, and isolated.
Since this application was not going to be server heavy, we were looking into free, shared,
and the basic tiers. The charges were based on per hour, but converted into per month
for a responsible comparison between the other database costs. There is an initial $200
credit for Azure services however.

Free Plan

● 1 GB of Disk Space
● Up to 10 Mobile/Web/API apps

Shared Plan - $0.013/hour = $9.50/month

● 1 GB of Disk Space
● Up to 100 Mobile/Web/API apps
● Supported custom domain

Basic Plan - 0.075/hour = $54.75/month

● 10 GB of Disk Space
● Unlimited Mobile/Web/API apps
● Up to 3 Maximum instances
● Supported custom domain

Table 30 addresses the pros (+) and cons (-) of using each database cloud service.

Amazon AWS Amplify Google Firebase Microsoft Azure

+ One of the cheapest so
far out of three databases
+ Cloud performance is

very strong
+ Cloud solutions are

beginner friendly
+ Excellent documentation

+ Real-time Database

+ Comparable low IT cost
+ Simple to implement,
using cloud functions
+ Autoscaling built-in

+ Robust APIs for
Javascript

+ Built in authentication
support

+ Strong focus on security
+ Extremely scalable

+ Allows you to use any
framework

+ Automate many tasks
+ Build a hybrid
infrastructure

- Geared towards large
teams

- Can cost you more if you
don’t manage it right.

- Slight learning curve, as
there are a large variety of

products

- Database doesn’t
provide relational data

- Difficulty to query larger
datasets

- Locked into using it if you
choose to scale

- Vulnerable to downtime

- Can get very expensive
- Requires management

- Needs Platform expertise

Table 30: Database Pros and Cons

Decision Matrix
Table 31 is the decision matrix to decide on a database cloud service for our app.

54

(1: Lowest, 3: Highest)

Decision matrix AWS Firebase Azure

Cost 3 3 1

Ease of Use 3 3 2

Performance 2 3 3

Support 3 2 3

Updates and
Maintenance

1 3 2

Total 12 14 11

Table 31: Decision Matrix for Databases

4.4.2.2. Server-Side Development

In order to use the database and make it work with our application and hardware device,
we need to make several API calls. An API call is the process that takes place after the
API is set up and ready to go. With the API call, the information is sent and processed
back to the user. We make calls to the server with these API calls.

There are a few languages that we will be considering for this section in order to make
our API calls. We will be considering PHP, Node.js, and Python. For each language we
will explore the pros and cons and make a decision matrix to determine which server-side
language will be best in order to correctly have our API calls and functions done.

PHP Language
PHP is one of the oldest and most used scripting languages in the industry. It is used by
several companies. PHP is fast, reliable, and well-known. If we are considering PHP, we
are considering a language that is well supported by many developers. In Table 32 and
33, we will discuss more in detail the pros and cons of using PHP. In regards to the team
knowledge, some of our teammates already have experience with PHP from previous
projects and this language has been used for many professors as well.

55

Pros Description

Low Barrier of Entry Getting started with PHP is simple. We didn’t need much
knowledge in order to use PHP for our project. It has been
a great tool and one of the oldest ones.

Huge Ecosystem The ecosystem is big for PHP. This is due to the popularity
with Wordpress and Magento. There are lots of training
videos and tutorials online in order to master this language.

A Multitude of
Pluggable Frameworks

Flexibility for the libraries being used across different
frameworks. It has become easier and less painful to
manage different frameworks with PHP.

Automation Tools Automation tools are available for testing and deploying for
PHP applications.

First Class Debugging It is easy to debug remotely with First Class Debugging
when it comes to PHP.

Table 32: Advantages of PHP

Cons Description

Interpreted Language Just like Python and Ruby, PHP is an interpreted
language that is compiled down to Opcode.

Threaded Execution There are scalability issues when it comes to PHP that
plague all of the threaded runtimes for other
languages such as Java Servlets, Python WSGI, or
Ruby Rack, or Microsoft IIS. You are basically limited
by memory to the number of connections you can
support.

No IoT Most interpreted languages, except by Node.js, do not
handle IoT technologies. With PHP, there is not much
support when it comes to this part.

Table 33: Disadvantages of PHP

Node.js (JavaScript)
Node.js is a runtime environment. Almost any popular editors now support Node.js,
therefore, it is possible to use this environment almost anywhere. Nowadays using a
middleware with Node.js is a common practice that makes development simpler for any
developers. In Table 34 & 35, we looked into some of the pros and cons of using Node.js.

56

Table 34: Advantages of Node.js

Cons Description

Performance
Issues with heavy
computation tasks

The biggest drawback of Node.js is its inability to process
CPU bound tasks. The problem is when Node.js receives a
CPU bound tasks: whenever a heavy request comes to the
event loop. Node.js would set all the CPI available to process
that first and other requests will be queued. That would result
in slow processing. Therefore, Node.js is not recommended
for heavy computation.

Callback Issue Due to the asynchronous nature of Node.js, this means it
relies heavily on callbacks, the functions that run after each
task in the queue is finished. There are a number of queued
tasks in the background, and each with its respective callback,
the result is a callback issue, which impacts the quality of the
code.

Immaturity of
Tooling

There is still poor quality or not properly documented/tested
npm tools in the npm registry. It is not structured enough to
offer the tools based on their rating or quality.

Table 35: Disadvantages of Node.js

Python
Python is one of the world’s most popular coding languages. Some of the top companies
use Python in their technology stacks such as Instagram, Spotify and Dsiqus. In Table 36
& 37, we will be looking into the pros and cons of using Python in our project.

Pros Description

Robust Technology
Stack

Getting benefits such as better efficiency and overall developer
productivity, code sharing and reuse, speed and performance, easy
knowledge sharing within a team, and a huge number of free tools.

Fast-processing
and event-based
model

Node.js is fast. It has a great performance. Synchronization
happens fast, which is helpful for event-based, real-time
applications. Due to its asynchronous, non-blocking, single-
threaded nature, Node.js is a popular choice for different types of
applications such as online games, chats, video conferences and
anything that requires updated data.

Seamless JSON
Support

PHP and Ruby on Rails can use JSON format for communication,
in our case, Node.js does it without converting between binary
models and uses JavaScripts. This is great to build RESTful APIs
for NoSQL database support.

57

Pros Description

Easy to Use and
Read

Low entry barrier also applies to this one, as with PHP. It is very
similar to the English language. The syntax is very simple to use.
This makes it an attractive language to anyone who has never
used a programming language before.

Asynchronous
Coding

It is effortless to write and maintain asynchronous code using
Python since there are no deadlocks or research contention or
any other confusing issues.

Portability and
Interactivity

Python has decent capabilities for dynamics semantics and fast
prototyping, which is possible thanks to this. This can be
embedded in a wide range of apps, even with ones that use
different coding languages. Fixing new modules is easy with
Python and it can also connect diverse components.

Table 36: Advantages of Python

Cons Description

Speed Limitations Python is an interpreted script language, which makes it
slower than a lot of its competitors such as C/C++ or
Java. Still, Python is used for a lot of software
development teams.

Not Ideal for Memory-
Intensive Tasks

Python is flexible with its data types. This results in fairly
high memory consumption and unfortunately it makes it
inconvenient to use for memory-intensive tasks.

Not Popular for Mobile
App Development

Python is not a bad language to use for mobile
development, it’s just that few companies use Python
for that purpose. Many companies prefer native
development for iOS and Android or React Native
Development. It is not as popular.

Table 37: Disadvantages of Python

Decision Matrix
After understanding the advantages and disadvantages of our different options, it is time
to make a decision. While many of these languages are great for our application, we will
need to develop with only one. Table 38 will help us make a decision based on what we
talked about above.

58

(1: Lowest, 3: Highest)

 PHP Node.js Python

Team Knowledge 3 2 1

Mobile
Compatibility

2 3 1

IoT Compatibility 1 3 2

Performance 1 3 2

Community
Support

3 1 2

Total 10 12 8

Table 38: Decision Table

In conclusion, Node.js was the best option when working with IoT technology and mobile
development. It also will work great with our front-end which uses JavaScript.

5. Project Design

For the project design, we looked into several areas. Connecting the hardware and
software was the most complicated part of the project. For that, there had to be a structure
that allows the software and hardware to communicate effectively. From our research, we
wanted to ensure we were using the frameworks, technologies, and hardware we felt the
most comfortable in.

To start with, for the rest of this section, we are using the following colors to represent the
reservation status on the hardware device:

● Available: Device is available and showing on the main screen of the app for the
user to reserve. The color to represent this status is green

● Awaiting Confirmation: User attempts to reserve a spot and device is waiting for
its button to be pressed. The color to represent this status is yellow

● Confirmed/Taken: User has pressed the button to confirm and the device verified
that it is the correct user. The color to represent this status is red

In the following sections, we are breaking down the hardware and software into smaller
areas. In these areas, we are talking about how the user interacts with our device, how
the inside of the hardware looks like and how the user will use our application to reserve
a spot.

59

5.1. Hardware Design

For the hardware design, we took into account our constraints listed above and try to
meet with our specified requirements. We also tried to keep in mind how we had to build
a design that can easily be taken apart and tested for errors. In order to make the initial
debugging and experimenting process as easy as possible, we created a prototype on a
temporary setup, which included jumper cables and protoboards. This allowed us to
connect parts together without any permanent connection and allowed us to configure
and update our prototype with ease.

5.1.1. Hardware Block Diagram

This section describes the overall flow and required components for this project. Since
our project requires communication between hardware and software. We focused on the
microcontroller, and Wi-Fi module in order to connect and transfer data from the software
to the hardware and vice versa. Moreover, we paid attention to the interaction between
the hardware components used and the microcontroller.

Figure 19: Hardware Block design

60

As shown in the figure above, the battery powered the main PCB where the
microcontroller, Wi-Fi module and keypad are located. It has to go through a voltage
regulator in order to keep a constant voltage through the system. The main PCB signals
the LED PCB using connectors between them as well as the battery to the main PCB.

5.1.2. Power Management System Design

For the Power Management System, we needed to keep in mind all of the active
components in this system, as well as how much voltage and current they require. Table
39 provides a list of the components we used.

Component Supply Voltage Current Draw

MSP430G2ET 1.8-3.3 V 0-400mA

ESP8266 2.5-3.6 V 80mA-200mA

LED 2.0-3.2 V 30mA

Table 39: Device input requirements

Figure 20: Power Supply Design

61

In order to provide the correct voltage to the MSP430 and the Wi-Fi Module, we utilized
an LDO Voltage Regulator. This regulator was chosen to meet the current draw of both
Microcontroller systems, as their peak current can reach 200-300 mA. However, to have
a better power management system we are using an Atmega328p since it draws 15mA.
Instead of the amount of current that MSP430 draws. Decoupling capacitors were added
in order to assist with Voltage fluctuations due to the Battery or the ESP8266, which is
known to cause Voltage peaks. There are 2 Decoupling capacitors on the main power
supply lines and a 0.1uF decoupling capacitor next to each component’s VCC pin. They
must be placed as close as possible in order to maximize their effect. Figure 20 above
demonstrates this at a simplified level.

5.1.2.1. Regulator Design Concerns

MIC5504-3.3YMS-TR was used for this design. This component handles the current draw
of the MSP430 and the ESP8266. This component has a dropout voltage of 380 mV at
300mA. Since our battery voltage is very close to the supply voltage of our logic devices,
we needed to consider the dropout voltage as a risk factor. If the difference between the
required voltage and the supplied voltage becomes too low, The voltage regulator ceases
to function. However, if the battery voltage passes through the regulator, at that point it
was enough for the logic devices to function properly. This mostly is the case when the
battery reaches a low charge.

To stabilize the system when this occurs, we added capacitors in parallel. These helped
smooth out any sharp drops in voltage. Also, since there is not much time for this project,
we did not implement a battery charge level tester. This increases the risk for malfunction
of the Regulator, but any fluctuations were diminished by the decoupling capacitors.

Another concern for the regulator was the current limit of the regulator, which is at 300mA.
Once this limit is surpassed, an internal MOSFET shuts off the voltage regulator until the
current returns. This could lead to sharp voltage changes that could affect the ESP8266,
which can perform hard resets if the voltage varies outside of its range. However, the Wi-
Fi module only consumes ~200mA when transmitting data, which only happens a minimal
amount of times.

Since an Atmega328p needs a 5V to power, we are adding a second 5V voltage regulator,
MIC5504-5.0YMS-TR, to power up this microcontroller instead of the MSP430.

5.1.2.2. Battery Design

In order to select the proper battery, it is crucial to take into consideration the intended
operator of the system. Students will have some considerations that need to be made
regarding the usability of the product. If disposable batteries are used in the system, that
would require the user or administrator, for this particular case Universities, to purchase
batteries continuously, which is unnecessary and not cost effective, especially with
several rechargeable battery options.

62

After doing research and concluding a rechargeable battery as a final choice, the difficulty
of recharging the battery should be considered. This is why the design of the battery
should allow for the battery to be removable with relative ease. This battery contains a 2-
wire JST connector which will have a mating female port in the main PCB.

This battery will be located at the bottom of the device for ease of access purposes and
to prevent any interference/damage to other components if the circuit fails. The battery
will be separated from the rest of the components using a casing which will be explained
in the following design section.

5.1.3. Connectors

The system needed connectors to connect the two PCB designs and the battery. In this
section, we will be discussing the connectors between these two PCB and the battery.
We will also discuss the adhesive that connect our pieces together.

LED/Main
In order to connect the LED PCB into the main PCB we used cable connectors in the form
of jump pins as shown in the schematic of the LED PCB. Using cable connectors (jump
wires) increases mobility of the LED PCB in order to place in the desired location. It also
allows for easy debugging and for simple replacement whenever an LED is determined
to be faulty.

Main/Battery
The supplied battery terminates in a JST-PH connector. For the connection to the PCB
to be detachable and easy to replace, we use a JST-PH socket. The battery we are
ordering comes with a JST connector already integrated into the battery which makes it
easier for integration.

5.1.4. Microcontroller

This section provides an overview of the connections and components necessary to
successfully implement the design. Moreover, it illustrates the final circuit design,
considerations and possible modifications. The final schematic design of the
microcontroller can be found in the Main PCB schematic section.

63

MSP430G2ET

Figure 21: MSP430 Microcontroller

Figure 21 shows the MSPEXP430G2ET Microcontroller. It was going to be the main
processor for all of the information processing. Figure 22 below demonstrates how the
MSP430 was going to be connected to the rest of the components.

Figure 22a: MSP430 High-Level Wiring Diagram

The MSP430 was going to communicate to the ESP82666 via UART Serial
communication. This was going to be done through pin 1.1 (RX) and pin 1.2 (TX). The
RGB LEDs will require a Pulse Width Modulated signal, which was going to be done with
Pins 1.6, 2.5, and P2.2. The Confirmation push button was going to connect to Pin 1.3
and the Keypad was going to be configured to Pins 2.6, 2.7, 2.4, and 2.3. Finally, the
Supply voltage and ground was going to connect to the Power supply circuit described

64

earlier. The MSP430 has a built-in crystal oscillator which it was going to use for the
Watchdog timer and for the PWM Signal generation.

For prototyping, the development board was used to program and flash the MSP430. This
board has an emulation portion that can be used to communicate with the host PC. By
using this development board we can not only flash the MSP430, but we can also
communicate with the ESP8266 Board.

This was the original design, however, after doing research and building the prototype,
we decided to use the Atmega328p and came up with a new high level diagram of how
this new microcontroller interacts with the rest of the components. We switched into the
atmega328p because of better documentation accessibility, current draw is lower than
other microcontrollers and also compatibility with Firebase. The same type of serial
communication (UART) using TX and RX is used with this microcontroller which is
connected to pin 4 and 5. The following figure represents our actual high level connection
of the microcontroller.

 Figure 22b: Atmega328p High-Level Wiring Diagram

65

ESP8266
A Wi-Fi module is required for connecting the device via IoT. ESP8266 is compatible with
the MSP430 series and also is the most popular and has more information and examples
available. As mentioned in the research section, the WIFI module was programmed using
the Arduino IDE which provides more libraries and it has more documentation online
about libraries to connect to the web application. This WIFI module was implemented in
the main PCB and was powered through the microcontroller using the battery chosen. It
is another input of the microcontroller. The Rx pin connects into the P1.1 port of the
microcontroller while the Tx pin connects to the P1.2 port of the microcontroller. This Wi-
Fi module includes front-end module to export the data. It was required to transform into
an IoT solution. Figure 23 shows the ESP8266 component acquired.

Figure 23: ESP8266 Wi-Fi Module

We are using the latest model of the ESP8266 which includes 8 Pins for serial
communication, Power, Ground, Reset, Flash Configuration, Channel Enable, and GPIO
Pins. This design does not use these GPIO pins as we are relying on the MSP430.
However, for this new design it is relying on the Atmega328p instead. The Chip enable
connects to the VCC with a 10k Ohm Resistor.

66

Figure 24: ESP8266 Connection Diagram

The board we are using had been broken out in order to create an easy experience for
users to begin to learn to program the board, and while we began prototyping using this
board, our ultimate goal is to implement this chip fully into our project. The following circuit
is available on the Wiki site for the ESP8266. This served as the foundation for when we
implemented the ESP8266 into the final design.
Ultimately, we did not have enough time to make these changes, so we implemented the
ESP8266 as a CCA that mares to the PCB Board.

Figure 25: ESP8266 Dev Board Schematic

67

5.1.4.1. LED PCB

The LED has its own PCB for simplicity and organization purposes. Moreover, since the
LED needs to be in a specific location, the transparent opaque stripe, having a separate
PCB will make it easier to put it in the proper place. For the design of this PCB, a four pin
header was originally used in order to connect the LED PCB with the main PCB.

In Figure 26a, the schematic of the circuit is shown. As shown in the schematic, since we
are using a RGB LED we will need three pins for each color (red, green and blue) and
another pin for the ground. For the red pin, a 43 ohm resistor will be used and for the
other two colors, green and blue, two resistors will be used using 3.3 ohm resistance
based on the specification of the LED chosen.

However, we decided to use two RGB LED boards which needed 4 PMW pins because
of the limited number of pins left on the Atmega328p. Because we only needed Red and
Green pins for the purpose of the device, we decided to not use the last Blue pin and did
not connect it to the microcontroller. The updated LED PCB schematic is shown in fig
26b.

Figure 26a: Schematic of the LED PCB circuit

Figure 26b: Final Schematic of the LED PCB circuit

68

Figure 27a: Schematic of the LED PCB board

Figure 27b: Final Schematic of the LED PCB board

Figure 27a above shows the connections and how the PCB board would have looked like
with the traces included. The PCB board is still small enough to fit the required
components in order to keep the design within the budget limit. This board was printed
separately from the Main PCB board and was attached to it using jumper wires. This
allowed for easy debugging and replacement in the future. Figure 27b above shows the
actual board with all the connections used in the device.

5.1.4.2. Main PCB

The main PCB shown in Figure 28a and 28b houses most of the components. It is
comprised of the power supply circuit, The MSP430 Circuit (which is now replaced with
the Atmega328p), the ESP8266 Circuit, and connectors to the battery and LED PCBs. It
also contains the Keyboard, Switches, and Buttons used in the circuit. Table 40 serves
as a guide for the component values of the capacitors/resistors.

69

Figure 28a: Main PCB Schematic

Label Component Value

C1 Capacitor 1000 uF

C2 Capacitor 0.1 uF

C3 Capacitor 470 uF

C4 Capacitor 0.1 uF

C5 Capacitor 100uF

R1 Resistor 10 kΩ

Table 40: Component Value Table

70

Figure 28b: Main PCB schematic updated

Figure 29a: Main PCB board design

Figure 29a shows the board design for the Main PCB. After positioning all of the
components, it was found that the connections would be realizable using only 2 layers.

71

This minimizes the cost and complexity of the designs. The components were spaced
apart as are the connectors to allow for easy debugging and manipulation. There was a
large amount of space in the bottom left corner of the board which can serve as a ground
plane.

Figure 29b: Main PCB board design updated

The main PCB Board is 10cm by 10cm. The main components used are shown here.
Connections to the Keypad, LED PCBs, and ESP Wi-Fi module are done using female
jumper pin headers to allow for easy removal. The pushbutton, battery, and on/off switch
are attached using JST-PH 2 pin connectors. On this PCB we have also included test
points for debugging and programming purposes. We use through-hole capacitors and
resistors for quicker assembling. However, the two voltage regulators are surface
mounted since these were the regulators that met our requirements, making sure that the
enable pin of the regulators go to the input. When designing the board, we made sure to
avoid 90 degree angles on our traces and to increase the width of traces carrying supply
voltage. We also created a ground plane on the bottom layer, which all of our through
hole DGND points will connect to.

72

5.1.5. Enclosure Design

In this section, the design of the casing device is discussed, as well as the reasons to
choose this specific design. Moreover, we discuss possible difficulties that came up when
splitting the design into three sections and how would the 3D printing was affected.

5.1.5.1. Overall Design

As discussed previously, the enclosure is a cylindrical design manufactured out of ABS
Plastic. Some initial mockups of what our design would look like are shown below in
Figure 30.

Figure 30: Concept Art for Study Spot Finder

The idea of the device is to appear modern and sleek, while not drawing too much
attention to itself. Anyone who sees the device should know that it belongs to the school
and that it has some purpose with the table. The universal color of the LEDs and the
school logo on the device help portray these things.

This device was divided into three different casing designs: the bottom, middle, and top
casing. We considered several designs to make the device easier to fix. Our device
design allows the bottom to open as a cover which will be the bottom casing. This part of
the device will house all the components and these two parts will be screwed together.

73

5.1.6. Outside Casing Design

The device uses an outside casing that fits over the inside design, which houses the main
components and battery. The cover does not contain any components besides the main
confirmation button and the 4 digit keypad, which connects to the main PCB Board
through flexible, detachable connectors.

The outside design has two holes on the side at the bottom so it can be put together with
the inner casing design. The inner design has threads tapped into the bottom in order to
accommodate a screw. This screw is mostly a specialized screw so as to prevent
tampering. The outside casing was decided to be made of black ABS plastic. Figure 31
shows the outside dimensions of the outer casing.

Figure 31a: Outside Casing Design for the Finder

The process of constructing the case was done in 3 separate parts. The top of the case
was designed to fit the button we used. The top connects with the middle ring, which
opaque to allow the light from the LEDs to shine through. This connects to the bottom
part of the outer casing, which has no top or bottom in order to slide over the inside casing.
The three pieces combine together using Plastic Weld. The ABS plastic is able to melt at
high temperatures, and the plastic weld creates a chemical reaction that would have
bonded the pieces together and create a smooth, seamless piece.

74

The top will be susceptible to the harsh environment of the library, so it would be wise to
cover it in a clear coating to prevent fractures in the plastic or from students. The plastic
layers from 3D printing are not as strong vertically as they are horizontally, so adding a
clear coat would improve its resistance and would create a nice shine to give off a nice
appearance.

The original designed was not able to be built due to some manufacturing and design
restrictions we had on the 3D printing. We kept the design of the device, however, the
process and the material used were not the same. Instead, we used two plastic PVC tube
of 10 diameter for the top and the bottom piece where the main PCB and components
are hold. For the LED PCBs, we used clear polypropylene tube so the LED can still be
seen through it.

5.1.7. Inside Casing Design

Figure 31b: Inside Casing Design for the Finder

For the inside casing design, There was going to be 2 fixtures; one fixture was going to
be for the main PCB and another fixture was going to be for the LED PCB. These fixtures
are shown in Figure 31b. The fixture for the main PCB was going to have two parallel
blocks that was going to have slots on the insides in order to hold the main PCB in place
without it moving around. It also was going to allow for the PCB to be taken out and

75

worked on or replaced with relative ease. The fixture was going to hold the main PCB
sideways because there was going to be many connections being made to the board and
there is a big chance they were going to need to be connected and disconnected for
maintenance.

The second fixture was going to be for the LED PCB. It was going to be placed higher up
because it needs to be visible through the clear ring, which is installed at 10cm high. This
fixture was going to be connected only to the bottom and not the sides because the
outside enclosure was going to need to fit over and come off. That is why we decided to
use a single pole that will support the PCB. It is thin to minimize weight but also thick
enough to support structural integrity. Yet due to a world pandemic (COVID19) affecting
manufacturing and labs operating hours, we had to change the inside and outside design
and improvised a handmade casing with tools that were available to us. The main layout
can be seen below:

Figure 31c: Inside Casing Design for the Finder Final

5.1.8. Battery Casing Design

The battery casing design on the bottom of the device was designed as a separate
compartment where it was going to hold the battery. This allows for the battery to be
quickly accessible for repairs and replacement. Out original design was to have a hatched
lid which would be able to swivel open on a hinged joint.

Figure 32: Design of the bottom angle and side for battery casing

76

Figure 32 shows the bottom side of the device on the left where there would have been
a compartment for the battery casing if battery needs to be replaced for any reason. On
the right of the Figure, it shows from the sides where it would have contained two plastic
sticks coming out from the top in order to screw in the outside casing of the device.
However, this was not possible since our design was modified and the battery is held
within the bottom case, along with the main PCB.

5.1.9. LED Ring casing

The LED ring needed to be transparent enough to allow the light to shine through, but
also opaque enough to not reveal the inside of the device. The ring needed to be in the
form of a ring with a thickness equivalent to the thickness of the outer case in order to
give the device a flush appearance. The LED ring consisted of a clear ring coated with an
outer sheet of diffusive material. Figure 33 below demonstrates the size and dimensions
of the LED ring from a side view and a top down view.

Side View

Top View

Figure 33: LED Ring Casing design

77

5.1.10. Adhesive

Seeing as the device comes in separate parts, they needed to be assembled together.
The outer casing was made up of 3 parts:

● Top Portion (Push Button)
● LED Ring (LED PCB)
● Bottom Portion (Main PCB)

The adhesive held these three parts together. The bottom casing consisted of two main
parts:

● Base
● Battery Casing

There was going to be adhesive and possibly a screw holding these parts together. The
outer casing was going connect to the inner casing via two screws at the base where the
two parts meet. However, since we are not using battery casing and we are using PVC
tubes we decided to hold it with silicon glue.

5.2. Software Design

5.2.1. Software Development Process

When it comes to developing software, we had to implement an organized method in
order to get our application and its related components finished by the end of the senior
design project. There were several software development lifecycle models we could have
been implemented - some of the most notable ones are Waterfall and Agile development,
but there are also some other models such as iterative and spiral model. In general, the
software development lifecycle (SDLC) usually has these core components:

Planning
The first and most critical stage of the development lifecycle, planning required gathering
requirements needed for this project - we gathered information from the customer,
surveys, experts, etc. This stage also defined the risks associated with this project and to
see if the project was feasible.

Defining
After we have identified the requirements for this project we had to document it and make
sure that it is approved by customer (in this case Dr.Richie/senior design panel). We also
had to identify what features that we needed in our product that were required towards
the end of deployment (known as minimum viable product) and which ones were stretch
goals.

78

Designing
The design of the product comes down what is implemented in the requirements section
and turns it into the design specification - the stakeholders went over it and suggested
any possible changes for it. This was the pivotal point of this process - it determined if a
project can take off or burn to the ground.

Development/Building
This was the stage where the product was built - developers must adhere to coding
guidelines by their associated organizations. There were different programming
languages that might have been used in this process, and it came down to what software
was being developed.

Testing
The testing stage were where all the product defects were retested, tracked, reported,
and fixed - until the standards were up to par defined in the requirements.

5.2.2. Deployment

We covered three major software development cycles for consideration in this project -
waterfall model, agile model, and iterative model for getting software shipped out.

Waterfall Model
A classical software development model implemented in government agencies and in
many companies, the waterfall model places an emphasis on planning in order to make
sure design flaws don’t crop up during development. There are some basic principles
associated with this model, it is divided into sequences, with allowable overlap and splash
back between stages. There is also emphasis on planning, deadlines, and budget as well.
A visual diagram is shown in Figure 34.

Figure 34: Waterfall Model

79

Iterative Model
Unlike the waterfall model, the iterative model does not place an emphasis on
requirement gathering - it starts with already implementing and specifying part of the
software, which can be later be reviewed at a later stage in order to develop further
requirements. This is then repeated, creating new versions for the software. As said by
Dr. Richie, this was implemented in Senior Design 2, as the requirement needs kept
changing and evolving. Figure 35 below shows this concept:

Figure 35: Iterative Model

As seen in the model, the stages were built into small parts, which allows the development
team to give feedback and improvements earlier in the process. It does show some
similarities to the Waterfall Model, as each build is similar to a mini Waterfall Model.

Agile Model
More focused on customer satisfaction and currently implemented in new tech companies
and startups, Agile development is starting to gain more traction. Recently developed in
the 1990s, it was later known to become the ‘Agile Manifesto’. The breakdown of this
model is as follows:

1. They begin as kick-off meetings (‘sprint kick-offs’)
2. Requirements take precedence and is understood
3. We estimate which requirements take certain point values (time estimation)
4. Design using simple diagrams
5. Development process begins with plenty of team interaction
6. Code is tested more frequently
7. Code maybe refactored

80

Figure 36: Agile model

Figure 36 shows how agile is organized - it starts with the product backlog, as determined
by the product manager, who takes input from stakeholders, customers, etc, which is a
list of requirements that gets compiled into a product backlog. The requirements then get
refined - putting them into focused sections called sprints which happen every 2-4 weeks,
with daily standups at the same time. At the end of the sprint, we hopefully have gotten a
shippable product. Table 41 below shows the pros (+) and cons (-) of the software
processes.

Waterfall Iterative Agile

+ Simple and easy to
implement
+ Phases are done one at
a time
+ Easy to manage
+ Good for small projects

+ More flexible than
waterfall model
+ Works well for
small/moderate projects
+ Documentation can be
reduced

+ Can incorporate
changes and release a
product in less time
+ Suited for web based
apps in correcting bugs
over time

- Adjustments can kill a
project
- High amounts of risk
- Software is not produced
until the end of the life
cycle
- Poor model for complex
projects

- Activities performed in
parallel are subject to
miscommunication
- Unforeseen
interdependencies can
create problems
- Milestones are
ambiguous

- Limited documentation
- Very difficult
measurement
- Fragmented output
rather than one cohesive
unit.

Table 41: Pros and Cons for Software Processes

81

Conclusion
There were some areas in the models that appeal to us, which was where we have
decided to implement a combination of Agile and iterative development during the entire
process.

5.2.3. Front-End

For the interface between the user and the device, a mobile application was used. This
mobile application is a React App. This app is compatible with any mobile devices using
Android or iOS, and is written with JavaScript and uses the React Framework.
The mobile app has different interactions for the user/student and admin/staff to use
during the reservation and set-up device processes.

5.2.3.1. General User/Student and Admin Flow Sequences

Before we jump into each individual component, we would like to give a general idea of
how our application works for both user and admin. This is a general overview of how the
application works. The next sections will explain in detail how each individual component
is working.

The first diagram (Figure 37a) describes the user flow sequence when they enter the
application - they are first greeted with a user login screen that prompts for a user or
admin login. If the person is a user, in this case a student, it will take them to a different
page that shows all the available spots.

The second diagram (Figure 37b) describes the admin flow sequence. If the user is an
admin, it takes them to a separate panel that gives them the ability to register the device
and enter any additional properties associated with it, such as outlets and what type of
table it has (e.g. group or individual). It will also allow them to modify and delete devices.

82

Figure 37a. User flow diagram of user login page on application

83

Figure 37b. Admin diagram flow

5.2.3.2. User (Student) First Interaction

In this section, we will be going over the entire user/student journey in order to understand
how they are using the application. This part of the design allows us to not have to worry
about how the app looks like. With the following designs, we were able to build the entire
interface with React and created different components based on each different screen for
our application. We will be explaining each screen and how the user is interacting with
each one.

Login and Registration Screens
In Figure 38a, the user is able to have their own login information and password to keep
track of their reserved spot. If the user is a first-time user, they are not able to login into
the app yet. Therefore, they have to register themselves in the app.

On the next Figure 38b, the user is able to make an account if they have not created one
yet. In this screen view, the user inputs general information such as name, school email,
phone number and university name. It is important to collect the University ID # because
we want to make sure the student does not use different accounts to get the best shot at
reserving the spot. This way, it makes it fair for all students to have a solid chance.

84

 Figure 38a: Login Page Figure 38b: User Creation Page

Login and Registration Flowchart
We illustrate this process with the following flowchart (Figure 39) as well. The user starts
at the very top by entering the Login Page. Then, the user can either login to start using
the app, reset their password and/or create a new account. After going to the login page,
if the person forgets their password, we initiate the password reset, which sends out the
email to the user with the link to change the password. The user changes the password,
and the password gets updated and the password reset process is finished. However, if
the user doesn’t have an account we prompt them to create an account. We ask them to
fill out their information, and once that is finished, we ask them to login to the application.

85

Figure 39a: User flow diagram when the user tries to login in

If the user attempts to create an account that has already been made in the system,
Firebase shall check if there if a user has been created already by their email identifier,
as shown below:

Figure 39b: User flow diagram when the user tries to login in

86

5.2.3.3. Reserve A Study Spot

In order to reserve a study spot, the user must go through a series of steps in order to
reserve, confirm, and use the spot. In this process, several users can reserve a spot as
well. It is always important to keep accurate information for all available spots, since users
are coming in and out to the app. The following screenshots illustrates the process on
how one reservation can be made.

Available Spots and Spot Information Screens
In Figure 40a, the user can find all the available spots to pick from. In this screen, the
user can search for available spots by putting the location they prefer, or just searching
the name of the table if they know it already. The next part of this screen shows all the
current available spots. These spots display basic information for the user to decide
whether they want to click on it for more information or not.

The information includes:

● The name of the study spot
● The location (building) of the study spot
● The floor in which this study spot is located
● The keycode that will be generated by the user
● Symbols that gives an overview of what the study spot holds such as:

○ Group Icon to represent if the spot is for a group of people
○ Individual Icon to represent if the spot is for one single user
○ Outlet Icon to represent if the study spot has outlets or not
○ Desktop Icon to represent if the study spot has a desktop computer to use

or not

In Figure 40b, the user clicked on a study spot to find out more information. Once the user
clicks on this, it displays the actual number of outlets available and capacity if it is a study
spot for a group.

87

 Figure 40a. Dashboard of App Figure 40b. Study Info Popup

As you can see in Figures 40a and 40b, the user can decide to reserve the spot by
tapping on the “Reserve” button. If the user is not ready or does not like the spot, they
can simply exit this screen by tapping on the X in the top right corner.

In our final application, we managed to implement this part with a different UX/UI
design. We changed the theme colors and did not have a hamburger bar on the top. We
also deleted the “Search” option since our application did not have as many study spots
available in the database.

Loading and Reserved Screens
In figure 41a, the user makes a decision and decides to reserve the spot. The waiting
time for the user is 10 seconds. This time is allocated because we need to ensure there
are no other users trying to reserve a spot at the same time. This allows the device to
update with the latest information and ensures the user is able to reserve the spot
selected. The user also has the option to cancel this action in case they changed their
minds in respect to this reservation.

88

Figure 41a. Timer popup when the user clicks on an available spot

In Figure 41b, the user gets a “Success” pop up if the reservation is successful. If the
reservation is not successful, another screen pops up saying that there was an error and
that they should try to reserve a spot again. The “Success” pop up shows brief information
on the spot and it also gives the user the generated code they must enter in the keypad
of the device to confirm the spot. User have exactly 10 minutes to confirm this spot. This
should be enough time to claim a spot since the purpose of our project is to provide real-
time available spots - that is, the user should be at the university in order to claim a spot.

In our final application, due to time constraints and prioritizing, we decided not to include
this waiting time for the user and the 10-minute time limit for the user to get to the spot.
These features are not essential to the function of the application, and only serve to either
press the user to claim the spot or give the device time to confirm the reservation when it
checks the database. Instead, there is a popup that appears once the reservation has
been placed, which asks the user to manually refresh the main page. This allows for the
status to be updated as reserved while the device updated from the database as well.
Once both the application and the device recognized this reservation, they will both wait
until the user has arrived and performed the reservation validation, which both platforms
update to reflect this change.

89

Figure 41b. Successful table reservation from the mobile app

Once the user gets the Figure 41b screen, then they are able to tap on the “Finish” button
and proceed to the next step of this user journey. At this point, the user is responsible for
confirming the spot by going physically to the spot and clicking the “Confirm” button after
inputting the generated code shown in the “Success” page.

Error Screen
As mentioned in the Loading and Reserved screen sections, there could be a possibility
that multiple users might be trying to reserve a study spot at the same time. For this, we
were able to come up with a process that allows the hardware device to get back to us
with the right information before proceeding to reserve. This solution gives 10 seconds
for the user to reserve the spot. In this time, the device should update with the right
information and also the back end should be aligned that there were no changes made
before this reservation was taking place.

In Figure 42, you can see an example of how this error message appear for the user. It
is simply letting the user know that there was a problem reserving the spot and that they
should try reserving one again.

90

Figure 42. Error when user tries to reserve a spot

Reserving a Spot Flowchart
For the flowchart diagram (Figure 43) below we start with the user login and we first check
if the student is registered (the main user). If it is not, then we make the user create an
account. If the student is registered, then we prompt them to the main dashboard to look
for a study spot. In this area, the user selects the spot they prefer. If they do not select
anything, then just stay in the same dashboard showing other spots.

Now, if the user reserves the spot, then they must wait for 10 seconds to reserve a spot.
They can also choose to not reserve the spot by clicking the X button and coming back
to the dashboard again. If they decide to wait for 10 seconds, the user has 2 options: they
can either wait till the spot is reserved or click on cancel. If they click on cancel, then they
just come back to the dashboard again. If they decide to wait, then they have a successful
page follow-up. If the request was not successful, it displays an error message and prompt
them to the dashboard again to find another spot.

However, as mentioned above, time restrictions and prioritization has brought us to move
forward without this feature, and simply allow users to arrive at their destination as soon
as possible.

91

Figure 43. User flow diagram when they reserve a spot

92

Reserved and Confirmed Spot Screens

 Figure 44a. Spot Reserved Figure 44b. Spot Officially Confirmed

In Figure 44a, the user can modify the study spot. This screen shows the same
information as the one displayed when the user selected the spot in the Available Spots
screen. In addition, we put the information of the confirmation code here in case the user
does not remember it. This helps the user find out how much time they have left before
the spot is released for someone else to use. In this screen, the user has the option to
also cancel the reservation in case they do not want it anymore.

In Figure 44b, the user already managed to get the physical study spot and entered the
code in the device’s keypad. This screen is to show that the study spot is confirmed for
the user. The user also has the option to release the study spot when they are ready to
leave. All these color changes are also being reflected in the actual device using an LED.

This is the end of the user journey regarding reserving a spot. Again, a user can reserve
only one spot at a time. When it is a group, the one reserving the spot is essentially the
group leader and they should always remember to release the study spot when they are
done. This applies to individuals as well when it comes to releasing a study spot.

93

In our final application, we included the screens above into the first pop-up for easy
access. Since we did not have time to include the time limit, we did not have a need for
having a separate page for it. We end up combining the “Cancel Study Spot” button and
“Release Study Spot” button into one single button called “Release Spot”. This gave the
option to the user to modify their reservation on the same pop up. We thought this may
be easier for the user since they would not have to go back and forth.

Reserved and Confirm Flowchart

Figure 45. Logical flow diagram for the user application

94

Figure 45 above illustrates the user login system for the Study Spot finder and checks if
the user is registered or not. If the student is not registered, we prompt for the user to
create the user to create a new account. We then have the user logged in to the main
dashboard, and we give them the option to reserve a study spot with two options - one to
show or not show the modify screen. Once the modify screen is shown, we check for one
of two scenarios: if the confirmation has already happened or not happened yet.

If the confirmation has already happened, we show to the user the modify screen with a
status of taken and a confirmed spot. On the other hand, if the spot is unconfirmed, it
gives two possible scenarios: if the user clicks on canceling the reservation, the
reservation is released and the status is green, while if not, the yellow status still pertains.
If the user clicks on release study spot - the status turns green, and if not, the states does
not change to green and persists to red as the status that is already taken.

5.2.3.4. Admin Interface

Figure 46a. Admin sign-in page

95

Figure 46b. Admin adding a Finder

For the admin, there is a different area in which they can register a new device. There is
no way for the admin to make an account, but it is under the assumption that admins will
be the IT department employees, and credentials are given to them to have special
privileges when registering a device. Admins have a different sign-in page than the users.

Admin Login Screen
As Figure 46a shows, the admin are able to login with their own credentials that are
provided to them since admins could be IT Department employees. No other user are
able to access this device except for the admins. A generated password is given to them
to sign into their account, once they take the first step, they can change their password
so it is more secure.

Register a New Device Screen
For the following sections, we were looking into the different fields to register a new
device. This action can only be done by the admin.

96

Name of Device
In Figure 46b, the admin is able to register a new device. This screen walks the admin
through the steps of setting up a new device for the study spot. First, admin must enter
the name of the device. This could get a bit tricky depending on how they want to show
these names to the users. Examples include “Table 1 - Student Union 2nd Floor” or “Spot
43 - Engineering 2 Atrium”. This part depends entirely on how the university wants to
structure their devices based on the infrastructure of the buildings and floors.

Serial Number Field
The next step is adding a serial number for the device. Each of our devices come with a
serial number ready to be entered. This number makes each of our devices unique.

Location/Specific Area Field
For the next step, the admin must enter the location/specific area. Again, this is
completely up to how the university wants to set this up. Part of our desirables include a
map of where the study spot would be; therefore, we would have to be more cautious with
the location if that was the case. Since we are not doing a map of the study spots for now,
then we are leaving this to the university regulations.

Outlets Fields
Next in the list we had two fields for outlets. We also liked to consider the fact that students
might want a study spot that might have outlets for their personal computers. That is, we
cannot assume that every student needs an outlet either. We give this option for the admin
to choose if the study spot where the device is being installed has outlets or not. This
information appears for the user when they are selecting a spot.

Desktop Computers Fields
Following up from information being shown to the user, we also want to inform them if the
study spot has desktop computers. We also have added what programs installed are in
the desktop computers and what operating system these computers run.

Capacity Field
Part of our mission is to offer a study spot for every type of college student. These study
spots can be for individuals or for groups. For the next field, the admin can enter the
capacity for this spot. If it is an individual space, then the admin can enter 1. If the table
is enough for four people, then they can add 4 in this field.

One more factor we considered is the fact that not all study spots might always have
chairs next to the table. Sometimes students can take chairs from other tables to add
them to their own table. Admins have the ability to enter the capacity they think might fit
best. For example, if the chairs are not attached, then they can enter the capacity to be
“up to 4 people”.

Modify Device Screen
The admin is able to modify the device whenever they think it is necessary. In screen
Figure 47a, the admin has a similar interface as the user/student in the sections above.

97

In this case, the admin is not able to reserve spots but they are able to click on a spot to
see more information and start the “Modifying” process. The user is able to tap on the
Modify button and it takes them to the next screen.

The next screen is Figure 47b. In this screen, the admin is able to update any
information on the device. This screen is never presented to the user/student, only an
admin with special privileges is able to make these changes.

They also have the opportunity to cancel this request in case there is no more need to
modify the device. Finally, they are able to delete the device as well in case it is not
needed anymore.

Figure 47a. Admin Spot Popup

98

Figure 47b. Modify Properties

In our final admin platform, we decided to have all the fields to be text fields. In the
image above, we can see that the admin can make a few selections such as Spot Type
and Outlets Available. We decided to make it easier for the admin to create/modify a
spot by making it simple text fields they can write on.

5.2.4. Back-End

To be able to handle the status of different devices and communication between the user
and the device, a database and API(s) were used.

Google Firebase were used as the database. This software tool allowed us to handle data
requests/process in real-time, using JSON format as the middle communication between
the database and the device. In addition, Firebase has cloud functionality, in which
changes could be made to the database in real-time. Firebase also works optimally with
React, which is the main technology being used for the front-end.

Figure 48 shows how the database interacts with the microcontroller and with the front-
end application:

99

Figure 48: Back-End Diagram

As seen in the diagram above, Firebase interacts with the microcontroller using a
middleware through an API (Application Package Interface) interface. The ESP 8266 Wi-
Fi module is strongly being considered for it to relay the data to the Firebase, as well as
any API support.log

5.2.4.1. Database

For the Database, we used Firebase made by Google. We used Firebase in order to
communicate with all our platforms.

Entity Relationship Diagram
In order to understand how we are keeping track of all users, admins, and devices’
information, we needed to create an Entity Relationship Diagram. This diagram allowed
us to create different tables in the database. This way, we can ensure we are keeping
track of all records and the application are functioning logically.

100

 Figure 49. Entity Relationship Diagram of Study Spots, Students, and Users

In Figure 49, we can look at how the database stores information from all users. Admins
have a username and password as well, but they do not have a profile like students do.
Admins’ mission is to set up the study spots with all the relevant information that might be
beneficial for the student. The location was separated in case we had the time to include
our map desirable feature. This way, we would be able to use the location and use (for
example) google maps to provide a location for the study spot. This becomes accurate
when it comes to latitude and longitude, which is what we would use if we were to provide
a map to the student.

101

In our final application, we add the following fields to Study Spots:

• Status

• Change serial number to device ID name

• Location

• Floor
We delete the location entity since we are not using a map at the end of the day due to
time constraints. We decided to merge these fields into one and have them all under
Study Spots.

The database holds different values to keep track of different states within the application.
Table 42 shows the descriptions of the values you can see in the Figure 49.

Values Description

Sign-In Information Database holds the usernames and hashed passwords from each
individual user. A user can be a student, but a user cannot be a
super admin.

Super Admin Super admins have their own login credentials. They cannot register
as if they were a student. Super admins are given their credentials
and the option to change their passwords once they login.

Status For the user of reservation system, we have a status field per device.
Each device has their own statuses and based on the interaction
from the user with the device, this status field changes. It sends new
information to the device for it to use and collects information from
the application.

Devices The main part of our project is to hold all the devices we have,
assuming we have a lot of them. Since we were not be able to create
several hardware devices, we had the database populated with
“devices” that serves the purpose of simulating the hardware
devices.

Table 42: Table of Values

5.2.4.2. Middleware (API)
The middleware (API) is essentially the area in which we handled the requests from the
user, from the device, and from the database. With this area, we are constantly asking
the database to give us the most updated information or we are sending the most updated
information to the user. These are called API calls. They are in charge of communication
among all entities within the application.

102

Figure 50. API Diagram

In Figure 50 above, this checks for user authentication on the mobile application - if they
cannot, it redirects them to enter their password again. However if it a success, then it
validates their request - if that request is improper - it can happen in one of three ways: a
bad request, a missing parameter, or some random unknown issue. For the first way - if
the request is malformed, it returns a 400 error code and we specify the user to retry
inputting their password again. If we get a query parameter issue, it means the hash in
the authentication got corrupted, and the temporary solution was to inform the user to
reenter their password again - and posts a return code of 422 to the server. If there was
an unknown issue that happened during login (sometimes there are issues with servers
that we do not know about) we also post an error code of 5XX, and ask them to try again.

However, if the request is okay, we check for the if the authentication token is generated
during the authentication process. If one is not generated, we store the credentials in
cache or the database in this case (not recommended), as it is in plaintext, leading to
possibilities of attack, and returns a return code of 2XX, and the authentication process
is complete. If one is generated, it checks the lifecycle of the token, and if the lifecycle is

103

expired, store the credentials in the database, and do the same as before, however, if the
lifecycle is still active, post the return 2XX code and the authentication process is over,
letting the user in the system.

We are using RESTFul API or Representative State Transfer, in which the server
transfers to the client a representation of the state of the requested resource. The state
is in JSON format. Some of the most common HTTP Format is GET, POST, PUT, and
DELETE, which is described below.

Study Spot Admin Page

Figure 51: API diagram of the admin page

104

Username Diagram

Figure 52: API diagram of the user login system

105

Main Logic (Steps) - User

Step # User Action

1 When the user sees what spots are currently available, the app is
fetching the data (devices with green statuses) from the database to
show on the main screen what devices are currently ready to use

2 As soon as the user presses the “reserve” button, the system will
take approximately 5 seconds to ensure the hardware device is
ready to change the color status from green to yellow. The database
is updated accordingly for this device and change the status now to
yellow

3 The database communicates with the device to change the color
status and reflect this recent change

4 The device waist for 10 minutes for the user to press the “confirm”
button

5 Once the “confirm” button is pressed, this data sends back to the
database so it can update the status from yellow to red

Table 43: User Steps for Reservation

Table 43 demonstrates the User Steps for Reservation, and how it relates to Firebase.
Since these changes are being done in real-time, other users would expect to be able to
claim a spot if the spot has not been confirmed by the correct user yet. After 10 minutes,
the device turns green again and the status is reflected on the database for the next user
to use.

6. Testing

In general, in order to ensure the software and hardware are working properly, we needed
to look into testing each area individually. There are different ways to test software and
hardware, but the main part was being able to connect them both together in order to
make the whole project work. In the next sections, we will be providing in detail what was
needed in order to ensure our project was delivered in time.

6.1. Hardware Testing

In this section, required and necessary test cases are presented in order to demonstrate
the full functionality of the hardware section of the project and integration with software.
Most of the hardware components were tested separately in order to verify their proper
functionality, then assembled and tested again to verify their compatibility. If the device
gives any issues as far as the hardware is concerned, these tests provided a useful
framework to decompose the source of the problem.

106

6.1.1. Microcontroller Testing

The microcontroller oversees reading and interpreting data from the reservation system
database, as well as reading inputs from the buttons, keypads, and sensors in order to
confirm if a spot has been occupied or not. The microcontroller tests included:

Stand-Alone microcontroller circuit
This test verified that the microcontroller was not shorted internally, in order to ensure
that turning on the microcontroller did not damage any external parts or cause further
damage to the microcontroller. This was accomplished using a multimeter, by performing
a resistance test between the GPIO pins and verifying that the resistance is >1 MΩ

Voltage level
For the voltage level test, we simply measured the level of the active GPIOs to verify that
the correct voltage necessary to run the device was being supplied. This was done using
a multimeter. The pass criteria for this test would be that the voltage of the GPIO meets
or exceeds 3.3V.

Current level
The current level test verified that the external devices are functioning correctly and
pulling the correct current from the Microcontroller. This was done with a multimeter
measured in series. The probes were inserted before the power was turned on, and the
microcontroller circuit test was done prior to this step.

Basic imported code
For this test we tested the basic functionality of the microcontroller without any additional
components attached to it. For this test, a basic ‘hello world’ was conducted with an LED.
The LED was tested on a simple resistor circuit to verify that it works. The ATMega328P
was placed on the development board and a test program was flashed onto the board.
This code turned on the LED, waited 2 seconds, and then turned off the LED.

This test verifies that the GPIO Pins are working and that it can connect to and receive
code from a serial port. It also verified that the correct voltage level is being applied. This
test was repeated for any GPIO pin assumed to be faulty. Here the pass criteria would be
that the LED turns on and off with a 2 second delay.

The microcontroller circuit was tested in different ways to ensure the accuracy of the
circuit design. Moreover, during this section the performance of the voltmeter and
ammeter which demonstrated the efficient performance of the device. However, the
MSP430G2ET did not pass testing with the firebase, thus we decided to switch to the
Atmega328P. We performed the same test cases with this chip and we concluded that
this had a satisfactory performance in current draws and firebase connection.

107

6.1.2. Wi-Fi Module Testing

The Wi-Fi module testing was performed by sending AT commands to the ESP8266 and
see if it responded as expected. These commands were sent from the terminal to the
module. The Arduino UNO development board was used to connect this Wi-Fi module to
the PC. Another option was to use a USB serial cable which can be sent from any serial
terminal program. To achieve this testing, we used the following settings for the serial
terminal:

● NL & Cr: send a newline and carriage return char at the end of command
● baud rate needs to be set to 115200.

6.1.3. Battery Testing

The rechargeable Lithium Ion battery is the only power source for all the hardware
components required for this project. The battery was tested by using a multimeter to read
the voltage when it is fully charged and discharged. The results obtained from this test
should be similar to Table 44 below.

Measurement Expected Value

Fully discharged 3.0V

Fully charged 4.2V

Table 44: Battery Voltage Levels

We ended up changing the battery for the final design, so our expected values shifted to
8.2V and 9.0V for discharged and charged, respectively.

6.1.4. Push Button Testing

Component Testing
In order to test the push button, a simple testing was done in the beginning. We used LED
in order to perform a test case. The LED was attached to a simple circuit with a reasonable
power supply and a properly rated resistor. The push button acted as the switch which
completed the circuit and light the LED. The pass criteria was that the LED lights up
whenever the button is pressed.

Integrated Testing
Once the button was integrated into the microcontroller, there was a test program that
verified that the microcontroller is recognizing the button press. This was necessary to
ensure that any failures are not being caused by the inability of the microcontroller to
recognize that the reservation button has not been pressed. This test was completed after
the previous test in order to rule out the possibility that the button is faulty.

108

6.1.5. Keypad Testing

Component Testing
The keypad was tested by using a multimeter to measure continuity. The common node
was measured for continuity between each port that corresponds to a single button. The
pass criteria was that each button closes the circuit to the common node for its
particular port.

Integrated Testing
We connected the keypad to the corresponding pins on the ATMega328P and flashed
the Keyboard Test program. This program verified that the ATMega328P can recognize
button presses and differentiate between the different keys pressed.

Functional Testing (Keypad and Button)
The Code Verification Test program also allowed us to test how the MSP430, in this case
the ATMega328P, handled the inputs and verified it with a given 4 digit code. It was able
to keep the last 4 values input into the keypad for verification purposes and compare
those with the given stored value once the push button is pressed.

6.1.6. Voltage Regulator Testing

Component Testing
The voltage regulator was tested in order to get the desired output voltage and current
with appropriate tolerances. We tested the voltage regulator circuit on its own. It was
attached to a power supply and the other end was attached to a load. The power supply
swept in value from 12V DC to 0V to measure the dropout voltage and whether regulation
was occurring outside of those ranges.

Integrated Testing
The voltage regulator also needed to be tested with a load to see if it can handle the
power draw necessary from all of the components. The circuit was assembled as it is in
the final design and each device performed its full functionality. Then the voltage regulator
was monitored with a DMM to make sure that it can sustain the current draw from the
devices.

6.1.7. Switch Button Testing

Component Testing
Similar to the push button testing, we performed a simple test using LED in order to verify
the function of the push button. We used the battery as a power supply without voltage
regulator or microcontroller.

Integrated Testing
Another test was using the switch in order to control the microcontroller since the switch
button was used for turning on and off the device. The switch button was connected to

109

the microcontroller and be toggled in order to check if power was sent to the
microcontroller.

6.1.8. LED Testing

Component Testing
In order to verify that we have a functional LED, it had to be tested separately. We used
a simple circuit consisting of a power supply and a proper resistor value. Since this LED
can change colors, it has multiple inputs, each of which require different currents. We
took this into consideration as we tested each input and verified that all the colors are
working.

PCB Board Testing
To verify the PCB board was set up correctly, we used a multimeter to verify that the
jumper wire header pins were connected to their respective cathode pin on the LED
pinhole. The anode of each LED was connected to the common ground wire of the jumper
wire header pins. The resistance of each resistor was verified as well before connecting
the LEDs in order to prevent damage. Table 45 illustrates this test step

Steps Description

1 Use a multimeter to read the resistances to verify that they are correct

2 Turn the multimeter dial to diode setting and connect it to a breadboard
and connect the red and black probe to the proper location to ensure the
LEDs are functional

3 Evaluate the brightness of the LED

Table 45: LED Testing

6.2. List of Test Programs

Table 46 lists the programs that were created to flash onto the Microcontroller whenever
a debug was necessary. These programs singled out a specific component to test to verify
that is working. They can be used in the overall main program that was flashed into the
final version of our device, but kept separate to use as needed.

110

Part to Test Name Function

Microcontroller Hello World Blinks an onboard LED on a
timed delay in order to verify that
the microcontroller can receive
and execute code.

GPIO Hello World 2 Blinks an external LED on a
proto-board circuit, to verify that
the pins function correctly

Push Button Button Test Triggers an interrupt when the
button is pressed and toggle the
on board LED. Should contain
preventative measures for button
debouncing.

Keyboard Keyboard Test Reads the inputs from the keypad
and transmit the received buttons
to a terminal app. Should properly
decipher between each button

KeyBoard/Push
Button/MSP430

Code Verification Test Reads and stores the last 4
inputs given before the confirm
button is pressed. Compares the
final value to the given stored
value. Lights up green LED if
correct, red LED if incorrect

Table 46: Test Programs for Hardware

7. Software Testing

In order to test how our mobile app was responding to the device, we needed to have
multiple devices available. Since there were only 1-2 hardware devices being built, there
was no way for the software side to figure out if the app was working properly. This was
a real-time application and the database was expecting to have multiple devices
available.

To solve this issue, we had a testing website which would simulate how the user would
interact with our hardware device in real life:

111

Figure 53: Figure of Testing Website

As Figure 53 shows, there were different factors being considered here in order to
simulate how the hardware device would operate.

Select Table Field
In this dropdown menu, we can select which “device” we were using. This area was
simulating the user approaching the study spot and sitting in the table. These names
depended on what the admin set up from the “Register Device” page. In other cases, the
university is to label different tables so it is easier for students to differentiate since a map
option might not be available for them.

Simulation
Once the table has been selected by the user, a button “Status of Device” followed up
after. This button changed colors depending on what the user wants and the database
sends to the device. In the following figure, the “Status of Device” is yellow. That is, the
user already reserved the table and the device is waiting to be confirmed. Potentially, we
added a randomly generated code that would take care of the authentication since any
other random person could press the button in real life and mess up the reservation. In
order to prevent this, authentication between the device and the user is needed to figure
out if the person confirming is the correct one. This code would be randomly generated
when the user reserves the spot. Then, the user would enter this code in a keypad in the
device and press the “Confirm” button. To simulate this part, we generate a code within

112

the app and then add it in the “Generate Code Here” field on the testing website and click
“Confirm”. Once this button is clicked, the “Status of Device” button should change to red
to reflect that it’s taken.

This testing website was abandoned in the end due to time restrictions and the realization
that the devices could be created through the firebase real-time database. Since the
hardware devices read and write to the real-time database, the software was required to
operate there as well. Google’s Firebase allows authorized users to access the real-time
database and modify/add fields, which is the same process that would have been
undertaken by this test site. Therefore, it was abandoned for simplicity purposes.

Test Cases
There were also a few additional test cases for making sure that the device communicates
back and forth between each other, shown in Table 47.

Test Case #1 - Adding the device

Action: Add the device from the admin control panel
Reaction: The device’s JSON should show up in the database, and the led on the
study spot finder should flash green three times to confirm

Test Case #2 - Removing the device

Action: Delete the device from the admin control panel
Reaction: The device’s JSON should disappear from the database

Test Case #3- Creating User Profile

Action: Create a user profile from the user signup form
Reaction: Database should show updated user information in JSON format

Test Case #4 - Code generation and verification

Action: Application should generate a random code and when person enters said
code.
Reaction: User is confirmed for their spot, by changing the table status to red

Test Case #5 - Delete User Profile

Action: Admin should be able to login to the control panel and delete the user
Reaction: User information should be gone from the database

Table 47: Software test cases for the Study Spot Finder

7.1. Security Concerns

In this section, explanation about software and hardware concerns are being discussed
and possible problems that the design might run into and how to prevent it.

113

7.1.1. Software

In regard to software security concerns, we looked into different ways that someone might
be able to steal our information, API keys, information from users, etc.

Table 48 Outlines some of our software security concerns:

Security Concern Reason

Database Hack One of our main concerns should be the
database. If someone gets access to our
database, they basically have the information to
all of our devices and can easily change and
customize information. This would not be
beneficial for the Study Spot Finder app since
several users might be depending on accurate
data. Besides the devices, hackers could also
steal students’ information such as school and
student ID. Several identities can be affected by
this if not built properly.

API Keys Stolen In order to get to the database, there is also API
keys information that could be stolen. With this,
hackers can grab whatever information they
might want for who knows what. They might use
this information to their advantage and to steal
information from our users.

Multiple Reservations Per User Our app only allows one reservation per user.
There could be a possibility that a hacker might
be able to create different identities and different
IDs in order to create multiple accounts, giving
themselves and advantage when it comes to
reserving a spot.

Table 48: Software Security Concerns

Possible Overall Solutions
In order to keep our application safe, there are a few protocols and precautions we can
do in order to prevent attacks from possible hackers.

Table 49 explains some possible solutions to the above concerns. Even though these are
possible solutions to our concerns, there is still a possibility that hackers can find their
way into our application.

114

Security Concern Possible Solution

Database Hack For this concern, we should be careful when it
comes to creating a new database for our project.
We should understand that there is no public way
to put a database out there, even though this is
still something people can do if they want. In our
case, we have to ensure we build a strong
database, but with the appropriate security.

API Keys Stolen For this concern, there could still be issues when it
comes to someone stealing our API keys. This
could happen anytime. Perhaps a git push of a
code file has these pre-set and our github is
public. That is just one example, but hackers can
always find their way to hacking our API keys. The
best solution is to make sure these are kept in a
safe place, even outside of the online world, but in
a piece of paper. This way we would never have
to deal with online hacking.

Multiple Reservations Per User For this concern, it might be a bit harder to solve,
but not impossible. As for our prototype, it would
be impossible to tell if the Student ID is real or not
since we do not own or have a copy of all the
student IDs available at the universities. The best
way to approach this if our app was scalable is to
have an agreement with the university to have a
copy of all the possible IDs at UCF, of course,
making sure they trust our application to hold
them. Another solution would be creating a
separate system that will just “Read” the IDs from
UCF’s database of IDs and then it would never
had to interact with it. This would be the optimal
solution since we will always have the latest
updates when it comes to new IDs and old IDs.

Table 49: Software Security Concern Solutions

7.1.2. Hardware

In regard to the hardware of this project, we might be running into several security
concerns as well since our product is physical and it is subject to the use and of many
students and users in a single day. These concerns are critical to the proper function of
the device and so we introduced solutions to handle all of our concerns.

115

Table 50 outlines some of our hardware security concerns:

Security Concern Reason

Open Case If a student manages to remove the screws that
hold the outer casing to the inner casing, they
would be able to access the inner electronics
and de-rail the entire system. (Not a problem
anymore since screws were not implemented
in the final design. However, a pressure cap
was used that can still provide the same
problem)

Remove any external component In the case of a student removing any external
components such as the keyboard or the push
button, the user would have no way of
confirming a spot. This would render the device
useless since it has a time-out function that
would cancel the reservation if no code is
placed.

Unplug Battery Finicky students may also try to access the
battery case and remove the battery in order to
sell it or use it for their own benefits. This would
cut all power to the system, making it
unresponsive and leaving the status in the
database locked forever. This problem could
snowball into something much worse, as the
app would be waiting for a response that is
never coming so the spot could either never be
confirmed or would stay reserved forever until
it was back online. We would also need
protective measures for the device to
automatically start itself up and resume its
normal status

Table 50: Hardware Security Concerns

116

Table 51 Below addresses these concerns to provide solutions:

Security Concern Solution

Open Case The best way to impede regular students from
opening the case, however unlikely that they are
carrying around a screwdriver with them, would
be to use screws that require a special tool to
open them, such as a torx bit or a security screw

Remove any external component A proper solution for this would be to figure out
how to use the microcontroller to self test its
components and verify that they are indeed
working. However, this may be outside of the
possible range of the microcontroller. Ultimately it
would be in our best interest to simply rely on
student feedback. If a student realizes that their
device is not working, the staff can simply take the
device out of service by turning it off, thereby
preventing other students from experiencing the
same problem. Although this is not an ideal
solution, it is also very unlikely a button will be
removed or unplugged so this case is very
unlikely.

Unplug Battery Since the microcontroller and the Wi-Fi module
loses power, all communications are terminated.
The best way to combat any miscommunication is
the verification process. The software waits for a
response from the device before securing a
reservation. If the device is active, it confirms the
status and the reservation will be placed. If the
device is off, the status does not be confirmed and
so that reservation becomes unavailable, giving
the user an error message to try again with
another spot.

Table 51: Hardware Security Solutions

117

8. Administrative

All engineering design and production required planning in order to have a successful
outcome. Each member acted as an administrator and kept track of the progress of each
other. In this section, the following subjects will be covered:

● Finances and budgeting for the Spot Finder
● High-level milestones and detailed milestones.
● Deadlines for each part of the project to ensure the project stays with the time

constraints

8.1. Project Budget
Since the project did not have any sponsors, the total cost of the project came out of
pocket from the team members, split evenly by 4. Money should not be an issue for this
project, as some of us are well funded from internships, and the hardware is relatively
cheap for this project, as listed in Table 52 below:

Item Cost

Plastic Weld $5.00

Wifi Module $3.80

Microcontroller $13.00

LED $1.00

Protoboard $5.00

Solder/ Electric Tools Free

Plastic Spool for 3D printing $5.00

Button $3.00

Circuit Components $30.00

Total $62/Device

Table 52: Cost Table

118

8.2. Bill of Materials

In this section, the list components used to build one device are listed with the relevant
characteristics needed. This bill of materials only covered the device in its ‘Essential’
stage, meaning that other less important features not used in the final design are not
included.

8.2.1. Bill of Materials Essential

Table 53 below represents the component list to achieve the essential or must have
goals for this project.

Level Description Manufacturer Part No Quanti
ty

Unit
Cost

Total
Cost

1
Microcontroller Microchip ATMega328P 1 $9.99 $9.99

1
Wifi Module Espressif WRL-13678 1 $6.95 $6.95

1
Battery Adafruit 353 1 $29.50 $29.5

1
Regulator Microchip

MIC5504-
3.3YM5-TR

1 $0.89 $0.89

1
Regulator Microchip

MIC5504-
5.0YM5-TR

1 $0.89 $0.89

2
LED

Jamecu
Value Pro

2228957 2 $0.39 $0.78

2 PVC Pipe Lowe’s MMUULTCG 1 $9.99 $9.99

1
Connectors JST PH 2 pin VUPN924 2 $2.90 $5.80

1
Button Jiu Man Y35-l265 1 $9.99 $9.99

1
Switch Judco J-188A-1 1 $1.85 $1.85

Table 53: List of components required to build this project

119

Parts Acquisition
In this section, we considered online locations of where we purchased our sensors and
our microcontrollers with judgements based on quality and price: DigiKey, Mouser, and
Adafruit. Table 54 shows each in detail.

Part Description

Digikey Cheap components and relatively fast
shipping, also has a good search where
you can look up any part quickly, also has
a huge inventory and consistent pricing,
their labels are much more better than
Mouser, as they are easy to read, but they
have dodgy packaging

Mouser Lower priced than Mouser, but their
search is a pain to use at some extent, no
free shipping, and their inventory lags
behind Digikey. Mouser’s packaging is
excellent on the other hand and takes
care of their shipping.

Adafuit Kind of pricey components, but very good
for specific projects for the Raspberry Pi
or Arduino, since they offer many ready-
to-use components, such as breakout
boards and kits.

Table 54: Parts Acquisition

8.3. Project Milestones

In order to create a product by the end of Senior Design 2, we created an estimated
timeline for the individual tasks that we encountered along the way in Senior Design 1 &
2. These deadlines were not solid and were in progress in progress at the time Senior
Design 2 Started. However, the project is being completed and fully functional meeting
all requirements we set in the beginning of the design. We faced some challenges and
changes throughout the process which was indicated in this paper.

120

Senior Design 1

Number Task Start Date End Date Status

1 Brainstorm Senior
Design Ideas

08/26/2019 08/30/2019 100%

2 Project Selection 08/30/2019 09/02/2019 100%

3 Goals and
Objectives for
Project

09/02/2019 09/06/2019 100%

4 Initial Project
Documentation

09/02/2019 09/20/2019 100%

5 Table of Content 09/20/2019 09/22/2019 100%

6 Research
Hardware

09/22/2019 10/21/2019 100%

7 Research
Software

09/22/2019 10/21/2019 100%

8 60 Page
Documentation
Draft

10/21/2019 11/01/2019 100%

9 Hardware Design 10/30/2019 11/15/2019 100%

10 Software Design 10/30/2019 11/15/2019 100%

11 100 Page
Documentation

11/14/2019 11/15/2019 100%

12 Develop Test Plan 11/15/2019 11/25/2019 100%

13 Order
Components

12/03/2019 12/10/2019 30%

14 Final
Documentation for
Senior Design 1

25/11/2019 12/04/2019 100%

Table 55: Milestone Table for Senior Design 1

121

Senior Design 2

Number Task Start Date End Date Status

13 PCB Layout/Print 12/09/2019 12/20/2019 50%

14
Assign Programming
tasks

12/05/2019 12/10/2019 100%

15
Initial Hardware
Testing

12/16/2019 01/02/2020 20%

16 Power Supply 01/02/2020 02/02/2020 10%

17 LED circuit 01/02/2020 02/02/2020 0%

18 Housing Prototype 01/02/2020 02/02/2020 0%

19 Database Set Up 01/02/2020 01/20/2020 2%

20 Static Application 01/02/2020 01/20/2020 0%

21 API requests 01/02/2020 01/20/2020 0%

22 Front-End Connections 01/20/2020 02/15/2020 0%

23
Back-End
implementation

01/20/2020 02/10/2020 0%

24 Initial Software Testing 01/25/2020 04/20/2020 10%

25 Build Prototype 02/05/2020 03/02/2020 0%

26
Test & Debug
Prototype

03/04/2020 04/16/2020 0%

27
Final Documentation
for SD2

04/20/2020 04/20/2020 0%

28 Finalize Project 04/17/2020 04/17/2020 0%

29 Final Presentation 04/19/2020 04/19/2020 0%

Table 56: Milestone Table for Senior Design 2

122

Task Delegation
In order to accomplish the planned timeline shown in the two tables above, the team
delegated tasks to each member of the team. The following table describes which team
was responsible for which task. However, the design choices needed to be reviewed and
approved by the entire team. Table 59 and 60 show the responsibilities of each team
member.

Team Member Task

Andrew Primary Task:
Responsible for the development of the front-end section.
Researches the software tools needed to build the best suitable
one for this project as well as programming language, libraries,
documentation and environment for integration with the
hardware components and back-end aspect of the project.

Secondary task:
Responsible for communication with the back-end person in
charge and the hardware team. Moreover, responsible for the
prototyping of the app. Creates and updates group meeting
plans.

Perla Primary Task:
Responsible for the development of the back-end section.
Researches the software tools needed to build the best suitable
one for this project as well as programming language, libraries,
documentation and environment for integration with the
hardware components and front-end aspect of the project.

Secondary task:
Responsible for communication with the front-end person in
charge and the hardware team. Moreover, responsible for the
prototyping of the app. Proofreads the project report constantly
to ensure continuity.

Table 57: Software Task Delegation

123

Team Member Task

Maria Primary Task:
Responsible for the LED pcb layout. Research the hardware
components needed as well as integration with the software team.
Moreover, in charge for the schematics and device design.

Secondary Task:
Requests progress updates for each team member to ensure
everyone is on track and every section is done within the
deadlines. Also, ensures that the chosen components are bought
and delivered prior to the timeline milestone

Darwin Primary Task:
Responsible for the power generation, wifi module and
microcontroller. Research the hardware components needed as
well as integration with the software team. Moreover, in charge for
the schematics and device design.

Secondary:
Responsible for the printing of the main pcb design and the
soldering of the electrical components. Furthermore, Verifies
every section, table and figure is labeled and numbered correctly.

Table 58: Hardware Task Delegation

124

9. Conclusion

The Spot Finder project involves existing technology previously designed and
implemented on the market; however, this device has both software and hardware
implementation in order to provide an advantage to students who would like to get a study
place without wasting time looking for it. Past technology was either meant for a business
environment which had similar features, yet some extra features no required for an
academic environment and missing features needed on the academic environment.
Another technology had only the software aspect of the project, however, this device
provides easiness and simplicity through interaction with the machine and web application
planned.

Even though, the team wanted to implement more feature to the device to make more
interactive, automated and simpler, due to time constraints and budget constraints, we
have decided to implement only the essential requirements to the device. For future
version of the device, the team plannned to implement more hardware features such as
sensors and recording, as well as improving the application platform. Regarding the
completion of this project, we were on time with our project based on the timeline planned
and ahead with ordering the components as well as building the software static prototype.

During this semester, the team did extensive research about new software technology as
well as hardware components and a way to integrate them. Then, the team decided what
features can be included in order to complete the project within the time constraint. Also,
research helped which hardware components were more accessible to integrate with the
desired software environment used. The goal for the full completion of the project by the
end of next semester was guaranteed with the essential specification requirements
functioning.

There have been certain challenges that the team encountered during the design of the
project for integrating the Wi-Fi module with the software design. The challenges were
overcome, and we came up with solutions to every problem we encountered. While this
group is formed by three computers engineer the hardware team and software team has
been divided into two equal teams where programming skills are required in both sides.
By the end of this project, the team have developed new skills in both software and
hardware levels. For the hardware aspect, the team have gained programming skills,
hardware design involving power supply, hardware components integration, PCB
schematics, design and assembly. On the software aspect, the team have gained new
programming languages, as well as new database environments, libraries and software
development skills. Furthermore, the entire team gained managerial skills and teamwork.

The main goal of this project was that each team member applied the knowledge of what
they have learned during years of college about circuit design and software development.

125

10. Appendix

10.1. Bibliography

“The 16 Most Important Pros and Cons of Using Python for Web Development.”
Django Stars Blog, 17 Sept. 2019, djangostars.com/blog/python-web-
development/.

“5V 40 LEDs Digital WS2812B Programmable Pixel LED Light Ring.” Kutop
International Limited, kutop.com/5v-40-leds-digital-ws2812b-programmable-pixel-
led-light-ring.html.

“Accelerometer Sensor.” Accelerometer Sensor - an Overview | ScienceDirect
Topics, www.sciencedirect.com/topics/engineering/accelerometer-sensor.

“American National Standards Institute.” ANSI, www.ansi.org/.

“Code of Ethics.” Code of Ethics | National Society of Professional Engineers,
www.nspe.org/resources/ethics/code-ethics.

“Detection Based on ‘Ultrasonic Waves “What Is an Ultrasonic Sensor?”
KEYENCE, www.keyence.com/ss/products/sensor/sensorbasics/ultrasonic/info/.

“DIP LED.” Visual Led, 26 Apr. 2019, visualled.com/en/glossary/led-dip/.

“ECFR - Code of Federal Regulations.” Electronic Code of Federal Regulations
(ECFR), www.ecfr.gov.

Gamma, Smart. “What Are the Pros and Cons of Using PHP?” Medium, Medium, 1
June 2016, medium.com/@smartgamma/what-are-the-pros-and-cons-of-using-
php-490553ed8ff2.

“The Good and the Bad of Swift Programming Language.” AltexSoft,
www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-swift-programming-
language/.

“The Good and the Bad of .NET Framework Programming.” AltexSoft, 28 June
2019, www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-net-
framework-programming/.

“IEEE Standards.” IEEE, www.ieee.org/standards/index.html.

“LED 101: Identifying Different Types of LEDs.” Electronic Products, 19 Apr. 2018,
www.electronicproducts.com/Optoelectronics/LEDs/LED_101_Identifying_different
_types_of_LEDs.aspx.

“LED STRIP LIGHTS.” Everything You Need to Know About LED Strip Lights |
Waveform Lighting, www.waveformlighting.com/led-strip-lights.

http://www.ansi.org/
http://www.nspe.org/resources/ethics/code-ethics
http://www.ecfr.gov/
http://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-swift-programming-language/
http://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-swift-programming-language/
http://www.electronicproducts.com/Optoelectronics/LEDs/LED_101_Identifying_different_types_of_LEDs.aspx
http://www.electronicproducts.com/Optoelectronics/LEDs/LED_101_Identifying_different_types_of_LEDs.aspx
http://www.waveformlighting.com/led-strip-lights

126

Marrakchi, David. “Top 5 PCB Design Guidelines Every PCB Designer Needs to
Know.” Altium Resources, 30 Sept. 2019, resources.altium.com/pcb-design-
blog/top-pcb-design-guidelines-every-pcb-designer-needs-to-know.

“Native vs. Cross-Platform Apps: The Startup Dilemma.” Skelia, 25 Sept. 2019,
skelia.com/articles/the-startup-dilemma-native-vs-cross-platform-apps/.

Scully, Taylor. “7 Things to Know Before Buying and Installing 12V LED Strip
Lights.” LEDSupply Blog, 1 Nov. 1969, www.ledsupply.com/blog/7-tips-before-
installing-led-strip-lights/.

Smith, W.A. “ESP8266 Testing.” Starting Electronics, Electronics for Beginners,
Hobbyists and Beyond, startingelectronics.org/articles/ESP8266-testing/.

“SPST PUSHBUTTON, PUSH ON/PUSH OFF.” All Electronics Corp.,
www.allelectronics.com/item/pb-13/spst-pushbutton-push-on/push-off/1.html.

“Ultrasonic Sensors to Detect Human Presence.” MaxBotix Inc., 22 Nov. 2019,
www.maxbotix.com/ultrasonic-sensors-detecting-people-156.htm.

http://www.ledsupply.com/blog/7-tips-before-installing-led-strip-lights/
http://www.ledsupply.com/blog/7-tips-before-installing-led-strip-lights/
http://www.maxbotix.com/ultrasonic-sensors-detecting-people-156.htm

